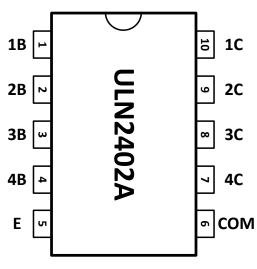


ULN2402A

新型四路高耐压、大电流达林顿晶体管阵列


描述

ULN2402A 是单片集成高耐压、大电流达林顿管阵列,电路内部包含四个独立的达林顿管驱动单路。电路内部设计有续流二极管,可用于驱动继电器、步进电机等电感性负载。单个达林顿管集电极可输出 500mA 电流。将达林顿管并联可实现更高的输出电流能力。该电路可广泛应用于继电器驱动、照明驱动、显示屏驱动(LED)、步进电机驱动和逻辑缓冲器。

ULN2402A 的每一路达林顿管串联一个 2.7K 的基极电阻,在 5V 的工作电压下可直接与 TTL/CMOS 电路连接,可直接处理原先需要标准逻辑缓冲器来处理的数据。

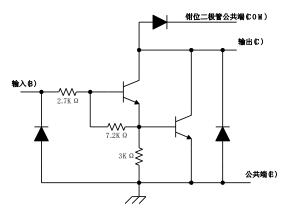
特别提示:SOP10 脚间距为 1.0mm,和 SOP8/SOP16 脚间距 1.27mm 不同。

引脚排列

SOP10/MSOP10 封装

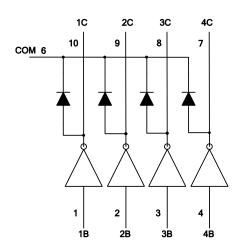
特点

- 1、500mA集电极输出电流(单路);
- 2、耐高压(50V);
- 3、输入兼容 TTL/CMOS 逻辑信号;
- 4、广泛应用于继电器驱动;
- 5、静电能力: 4000V(HBM)
- 6、提供 SOP10、MSOP10 封装


订购信息

型号	封装类型		温度范围
ULN2402A	SOP10	Pb-Free	-40°C ~ +85°C
ULN2402A	MSOP10	Pb-Free	-40°C ~ +85°C

典型应用


- 1、继电器驱动;
- 2、指示灯驱动;
- 3、显示屏驱动。

电路原理图(单路达林顿)

ULN2402A 单路驱动电路原理图

逻辑图

引脚定义

引脚编号	引脚名称	输入/输出	引脚功能描述
1	1B	I	1 通道输入管脚
2	2B	I	2 通道输入管脚
3	3B	I	3 通道输入管脚
4	4B	I	4 通道输入管脚
5	E	-	接地
6	COM	-	钳位二极管公共端
7	4C	0	4 通道输出管脚
8	3C	0	3 通道输出管脚
9	2C	0	2 通道输出管脚
10	1C	0	1 通道输出管脚

绝对最大额定值

(T_A=25℃, 除另有规定外)

参数		符号	值	单位
集电极-发射极电压(7~10 脚)		V_{CE}	-0.5~50	V
COM 端电压 (6 脚)		V _{COM}	50	V
输入电压(1~4 脚)		VI	-0.5~30	V
集电极峰值电流		I _{CP}	500	mA/ch
输出钳位二极管正向峰值电流		I _{OK}	500	mA
总发射极最大峰值电流		I _{ET}	-1.2	Α
最高工作结温(2)		TJ	150	°C
焊接温度			260	°C,10s
储存温度范围		T _{stg}	-60 ~ +150	°C
封装热阻 ^{(1) (2)}	SOP10封装	θ JA	123	°C/W
到夜流性,,,,	MSOP10封装	θ JA	125	°C/W

- 注:1、最大功耗可按照下述关系计算 $P_D = (T_j T_A)/\theta_{JA}$
 - 2、T_j(max)为 150℃, T_A 表示电路工作的环境温度;

推荐工作条件

(T_A=25℃, 除另有规定外)

参数	符号	条件	最小值	最大值	单位
集电极-发射极电压	V _{CE}		0	5 0	V
控制信号输入电压	V _{IN}		0	24	V
输入电压(输出开启)	V _{IN(ON)}	I_{out} =300mA, h_{FE} =800	2.8	24	V
输入电压(输出关断)	V _{IN(OFF)}		0	0.7	V
钳位二极管反向电压	V_R			5 0	V
钳位二极管正向峰值电流	I _F			350	mA
工作温度范围	T _A		-40	+85	$^{\circ}$
功耗	P _D			1.0	W

电参数特性表

(T_A=25℃, 除另有规定外)

,	参数	测试图	ž	则试条件	最小	典型	最大	单位
				I _C =200mA		1.9	2.4	
$V_{I(ON)}$	导通状态输入电压	图 4	V _{CE} =2V	I _C =250mA		2.0	2.7	V
				I _C =300mA		2.1	3	
			V _I =2.4V I ₀	c=30mA		0.78	1.0	
			V _I =2.4V I ₀	c=60mA		0.82	1.1	
$V_{CE(SAT)}$	集电极-发射极饱和压降	图 5	V _I =2.4V I ₀	c=120mA		0.9	1.2	V
			V _I =2.4V I _C =240mA			1.1	1.4	
			V _I =2.4V I ₀	_c =350mA		1.25	1.6	
V_F	钳位二极管正向压降	图 8	I _F =350mA			1.6	1.8	V
I _{CEX} 集电极关断漏电流		图 1	V_{CE} =40 V I_{I} =0			-	50	μΑ
ICEX	来名及八町m 名加	图 2	V_{CE} =50V T_A =85°C V_I =0V			-	100	μΛ
			V _{IN} =12V	'		4	5.3	
l ₁	 输入电流	图 4	$V_{IN}=6V$ $I_{C}=60$ mA			1.7	2.2	— mA
"	100/ (100)		V _{IN} =4.5V	=4.5V		1.1	1.6	1117-3
			V _{IN} =2.4V	1		0.35	0.7	
I_R	钳位二极管反向电流	图 7	V _R =40V			-	100	μΑ
C _{IN}	输入电容					15		pF
t _{PLH}	传输延迟 低-高	图 9	VL=1	L2V RL=45Ω		0.15	1	μs
t _{PHL}	传输延迟 高-低	图 9	VL=1	.2V RL=45Ω		0.15	1	μs

参数测试原理图

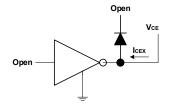


图1 Icex测试电路

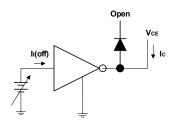


图3 I_{I (off)}测试电路

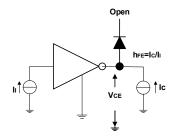


图5 HFE,VCE(sat)测试电路

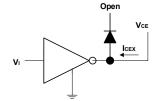


图2 Icex测试电路

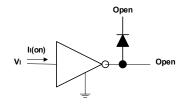


图 4 Ii 测试电路

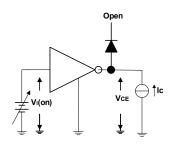


图6 V_{I (on)}测试电路

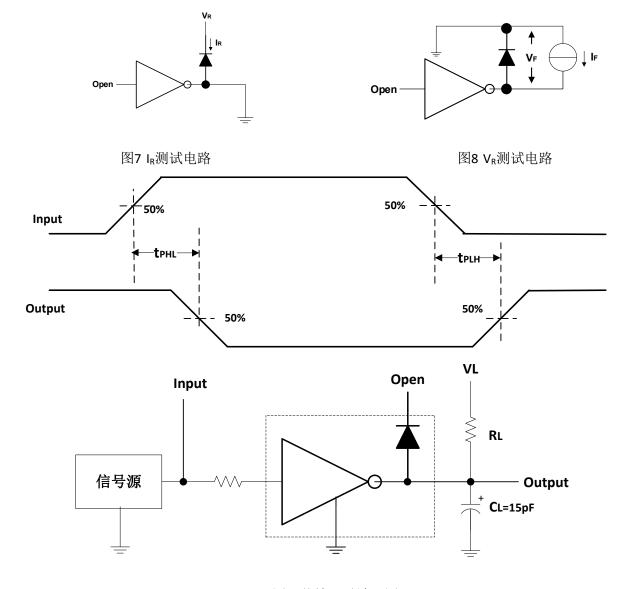
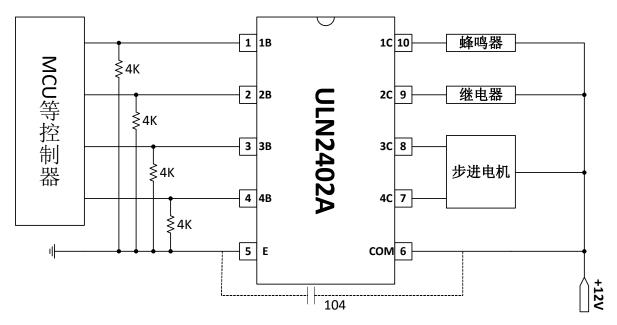
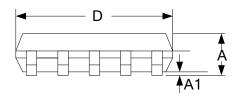
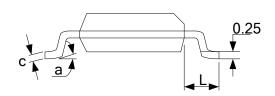


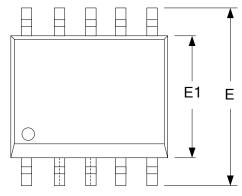
图 9 传输延时波形图

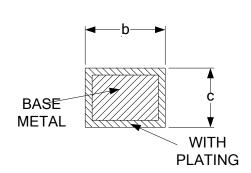
备注:图9中电容负载为示波器探头寄生电容

典型应用

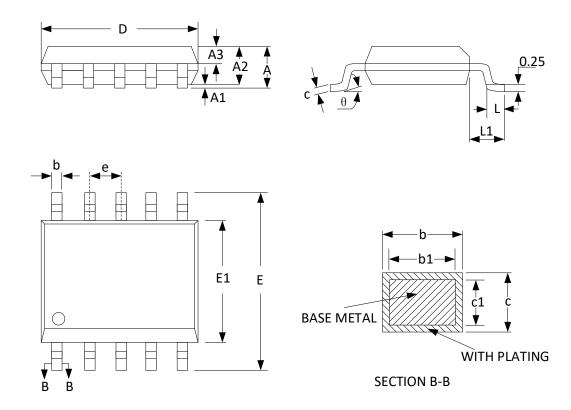




图 10 ULN2402A 应用示意图


考虑到目前有些应用采用了带上拉电阻的单片机,在上电时单片机输出状态不定,此时 ULN2402A 输入级会受单片机上拉电阻影响而将负载打开,为了避免负载的误动作建议存在此种应用问题的客户在输入级接 1 个 4K 的对地的下拉电阻,如上图所示。


封装外形尺寸图

SOP10:



CVMDOL	MILLMETER			
SYMBOL	MIN	NOM	MAX	
А	-	-	1.75	
A1	0.10	-	0.23	
b	0.30	-	0.40	
С	0.19	-	0.25	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.00BSC			
L	0.40	-	0.80	
а	0°	-	8°	

MSOP10:

CVAADOL	MILLMETER			
SYMBOL	MIN	NOM	MAX	
Α	-	-	1.10	
A1	0.05	-	0.15	
A2	0.75	0.85	0.95	
A3	0.30	0.35	0.40	
b	0.18	-	0.26	
b1	0.17	0.20	0.23	
С	0.15	-	0.19	
c1	0.14	0.15	0.16	
D	2.90	3.00	3.10	
Е	4.70	4.90	5.10	
E1	2.90	3.00	3.10	
е	0.50BSC			
L	0.40	-	0.70	
L1	0.95REF			
θ	0°	-	8°	

重要通知和免责声明

以上资料版权归重庆芯亿达电子有限公司所有,禁止复制和展示。本文件中的信息如有更改,恕不另 行通知。

版本历史

版本号	时间	说明
V1.0	2020-8	初始版本
V1.1	2020-8	增加 MSOP10 封装