SFH 213 FA ### Radial T1 3/4 Silicon PIN Photodiode ## **Applications** - Electronic Equipment - Highbay Industrial - Industrial Automation (Machine controls, Light barriers, Vision controls) - Smoke Detectors - White Goods ### Features: - Package: black epoxy - ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) - Wavelength range ($S_{10\%}$) 750 nm to 1100 nm - Short switching time (typ. 5 ns) - 5 mm LED plastic package # **Ordering Information** | Туре | Photocurrent | Photocurrent | Ordering Code | |------------|--|--|---------------| | | | typ. | | | | $E_{e} = 1 \text{ mW/cm}^{2}; \lambda = 870 \text{ nm}; V_{R} = 5 \text{ V}$ | $E_{e} = 1 \text{ mW/cm}^{2}; \lambda = 870 \text{ nm}; V_{R} = 5 \text{ V}$ | | | | I _P | I_P | | | SFH 213 FA | ≥ 65 µA | 90 μA | Q62702P1671 | ### SFH 213 FA | Maximum | Ratings | |----------------|---------| |----------------|---------| | Τ. | = | 25 | $^{\circ}C$ | |----|---|----|-------------| | Ι, | _ | 20 | | | Parameter | Symbol | | Values | |---|------------------|------|--------| | Operating Temperature | T _{op} | min. | -40 °C | | | op. | max. | 100 °C | | Storage temperature | T _{stg} | min. | -40 °C | | | 5.9 | max. | 100 °C | | Reverse voltage | V_R | max. | 20 V | | Reverse voltage
t ≤ 2 min | V_R | max. | 50 V | | Total power dissipation | P _{tot} | max. | 150 mW | | ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) | V_{ESD} | | 2 kV | ## **Characteristics** T_A = 25 °C | Parameter | Symbol | | Values | |---|--------------------------|--------------|--------------------------------------| | Wavelength of max sensitivity | $\lambda_{_{ m S\ max}}$ | typ. | 900 nm | | Spectral range of sensitivity | λ _{10%} | typ. | 750 1100
nm | | Radiant sensitive area | А | typ. | 1.00 mm² | | Dimensions of active chip area | LxW | typ. | 1 x 1
mm x mm | | Half angle | φ | typ. | 10 ° | | Dark current $V_R = 20 \text{ V}$ | I _R | typ.
max. | 1 nA
5 nA | | Spectral sensitivity of the chip $\lambda = 870 \text{ nm}$ | S_{λ} | typ. | 0.65 A / W | | Quantum yield of the chip $\lambda = 870 \text{ nm}$ | η | typ. | 0.93 Electrons
/ Photon | | Open-circuit voltage
$E_e = 0.5 \text{ mW/cm}^2$; $\lambda = 870 \text{ nm}$ | V _o | min.
typ. | 300 mV
380 mV | | Short-circuit current
$E_e = 0.5 \text{ mW/cm}^2$; $\lambda = 870 \text{ nm}$ | I _{sc} | typ. | 42 µA | | Rise time $V_R = 20 \text{ V}; R_L = 50 \Omega; \lambda = 850 \text{ nm}$ | t _r | typ. | 0.005 μs | | Fall time $V_R = 20 \text{ V}; R_L = 50 \Omega; \lambda = 850 \text{ nm}$ | t _f | typ. | 0.005 μs | | Forward voltage I _F = 100 mA; E = 0 | V_{F} | typ. | 1.3 V | | Capacitance $V_R = 0 \text{ V}; f = 1 \text{ MHz}; E = 0$ | C _o | typ. | 11 pF | | Temperature coefficient of voltage | TC_v | typ. | -2.6 mV / K | | Temperature coefficient of short-circuit current $\lambda = 870 \text{ nm}$ | TC ₁ | typ. | 0.1 % / K | | Noise equivalent power $V_R = 20 \text{ V}; \lambda = 870 \text{ nm}$ | NEP | typ. | 0.028 pW /
Hz ^{1/2} | | Detection limit $V_R = 20 \text{ V}; \lambda = 870 \text{ nm}$ | D* | typ. | 3.6e12 cm x
Hz ^{1/2} / W | # Relative Spectral Sensitivity 1), 2) $S_{rel} = f(\lambda)$ ## **Directional Characteristics** 1), 2) $S_{rel} = f(\phi)$ # Photocurrent/Open-Circuit Voltage 1), 2) $$I_P (V_R = 5 \text{ V}) / V_O = f (E_e)$$ ### Dark Current 1), 2) $$I_R = f(V_R)$$; $E = 0$ # Capacitance 1), 2) $$C = f(V_R); f = 1 MHz; E = 0;$$ #### SFH 213 FA ## Dark Current 2) $$I_{R} = f(T_{A}); E = 0; V_{R} = 20 V$$ # **Power Consumption** $$P_{tot} = f(T_A);$$ # **Dimensional Drawing** 3) **Approximate Weight:** 350.0 mg Package marking: Cathode ## Recommended Solder Pad 3) E062.3010.188-01 Pad 1: anode # **TTW Soldering** IEC-61760-1 TTW #### **Notes** The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the LED specified in this data sheet fall into the class exempt group (exposure time 10000 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation. Packing information is available on the internet (online product catalog). For further application related informations please visit www.osram-os.com/appnotes #### **Disclaimer** #### Disclaimer Language english will prevail in case of any discrepancies or deviations between the two language wordings. #### Attention please! The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version in the OSRAM OS Webside. #### Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Product safety devices/applications or medical devices/applications OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. In case Buyer - or Customer supplied by Buyer- considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer. ### **Glossary** - ¹⁾ **Testing temperature**: T_A = 25°C - Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. - Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm. Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved. 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。