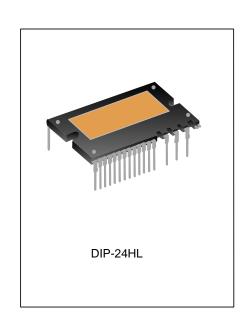


智能功率模块(IPM), 600V/30A 三相全桥驱动

描述

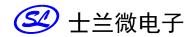

SDM30G60FC 是高度集成、高可靠性的三相无刷直流电机驱动电路,主要应用于较低功率的变频驱动,如工业伺服器、空调、低功率变频器等。 其内置了 3 相全桥高压栅极驱动电路和 6 个低损耗 IGBT 管。

SDM30G60FC内部集成了欠压、短路等各种保护功能,提供了优异的保护和宽泛的安全工作范围。由于每一相都有一个独立的负直流端,其电流可以分别单独检测。

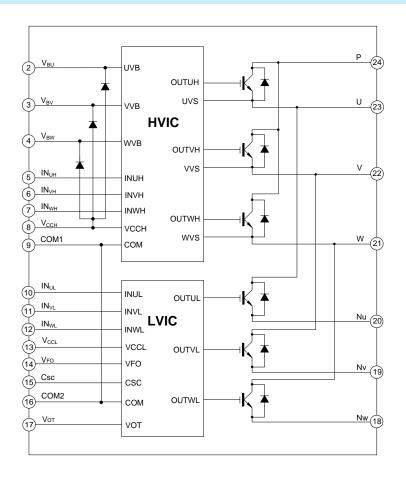
SDM30G60FC 采用了高绝缘和易导热设计,提供了非常紧凑的封装体,使用非常方便,尤其适合要求紧凑安装的场合。

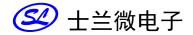
主要特点

- ◆ 内置 6 个低损耗 600V/30A IGBT;
- ◆ 内置高压栅极驱动电路(HVIC);
- ◆ 内置欠压保护、过流保护和温度输出;
- ◆ 内置带限流电阻的自举二极管;
- ◆ 完全兼容 3.3V 和 5V 的 MCU 的接口, 高电平有效;
- 3个独立的负直流端用于变频器电流检测的应用;
- ◆ 报警信号:对应于低侧欠压保护和短路保护;
- ◆ 封装体采用 Al₂O₃ DBC 设计,热阻极低;
- ◆ 绝缘级别: 1500V_{rms}/min。



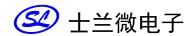
应用


- ◆ 工业伺服器
- ◆ 空调压缩机
- ◆ 低功率变频器


产品规格分类

产品名称	封装形式	打印名称	环保等级	包装
SDM30G60FC	DIP-24HL	SDM30G60FC	无卤	料管

内部框图


极限参数

参数	符号	参 数 范 围	单位
逆变部分			
加在PN之间的直流母线电压	V_{PN}	450	V
加在PN之间的直流母线电压(浪涌)	V _{PN(Surge)}	500	V
集电极-发射极电压	V _{CES}	600	V
单个IGBT的集电极持续电流,T _C =25℃,Tj<150℃	Ic	30	Α
单个IGBT的集电极峰值电流,T _C =25°C,Tj<150°C 脉冲宽度<1ms	I _{CP}	60	А
每个模块集电极最大耗散功率,T _C =25℃	Pc	89	W
结温	TJ	-40~+150	°C
控制部分			
控制电源电压	Vcc	20	V
高侧控制电压	V_{BS}	20	V
输入信号电压	V _{IN}	-0.5~ V _{CC} +0.5	V
故障输出电源电压	V_{FO}	-0.5~V _{CC} +0.5	V
故障输出电流,V _{FO} 端灌电流	I _{FO}	8	mA
电流检测端输入电压	V _{SC}	-0.5~V _{CC} +0.5	V
整机			
短路保护限压V _{CC} =V _{BS} =13.5~16.5V, T _J =150°C, 单 次且小于2µs	V _{PN(PROT)}	400	V
工作壳温范围,-40°C≤T」≤150°C(备注1)	Tc	-40~100	°C
存储温度范围	T _{STG}	-40~125	°C
IGBT结壳热阻	R ₀ JCQ	1.4	°C/W
FRD结壳热阻	$R_{\theta JCF}$	2.1	°C/W
绝缘电压60Hz, 正弦波, 1 分钟连接管脚到散热片	V _{ISO}	1500	V _{rms}
安装扭矩安装螺丝:-M3,推荐值 0.62N.m	Т	0.5~0.8	N.m

备注1: 功率芯片的最大结温是150°C,为了保证IPM能安全工作,建议平均结温Tj≤125°C(@Tc≤100°C)

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
PN之间母线电压	V_{PN}	-	300	400	V
控制电源电压	V _{CC}	13.5	15	16.5	V
高侧控制电压	V _{BS}	13.5	15	18.5	V
控制电压波动	dVcc/dt dV _{BS} /dt	-1	-	1	V/µs
防止桥臂直通的死区时间	T _{dead}	1.0	-	-	μs
最小输入脉宽	PWIN _(ON) PWIN _(OFF)	0.7	-	-	μs
PWM开关频率	f _{PWM}	-	-	20	KHz
COM变化 (COM-Nu,Nv,Nw之间)	V _{COM}	-5	-	5	V

电气特性参数 (除非特殊说明, T_{amb}=25°C, V_{cc}=V_{BS}=15V)

逆变部分

参数	符号	测试条件	最小值	典型值	最大值	单位
集电极-发射极饱和电压	$V_{\text{CE(SAT)}}$	V _{CC} =V _{BS} =15V, V _{IN} =5V I _C =30A, T _J = 25°C	1	1.55	2.0	V
FRD正向电压	V_{F}	V _{IN} =0V, I _F =30A, T _J = 25°C	-	1.7	2.2	V
	ton	V 200V V 45V	-	1.38	-	μs
 开关时间	t _{C(ON)}	$V_{PN} = 300V, V_{CC} = V_{BS} = 15V,$ $I_{C} = 30A,$ $V_{IN} = 0V \longleftrightarrow 5V,$	-	0.27	-	μs
	toff		-	1.26	-	μs
	t _{C(OFF)}	感性负载 详见图1	-	0.15	-	μs
	t _{rr}	17004	-	0.05	-	μs
集电极-发射极漏电流	I _{CES}	V _{CE} =V _{CES}	-	-	1	mA

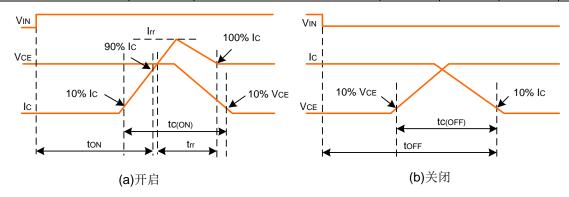
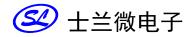
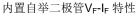



图1. 开关时间定义

控制部分

参数	符号	测试条件		最小值	典型值	最大值	单位
Vcc静态电流	I _{QCCN}	V _{CC} =15V, V _{IN} =5V	V _{CCH} -COM,	-	-	2.8	mA
VCC財态电机	I _{QCCF}	V _{CC} =15V, V _{IN} =0V	V _{CCL} -COM	1	1	2.8	mA
V _{BS} 静态电流	I _{QBS}	V _{BS} =15V, V _{INH} =0V	$\begin{array}{c} V_{BU}\text{-}V_{SU},V_{BV}\text{-}V_{SV},\\ V_{BW}\text{-}V_{SW} \end{array}$	-	-	100	μΑ
故障输出电压	V _{FOH}	V _{SC} =0V,V _{FO} 上拉10KΩ电阻到 5V		4.9	-	-	V
	V _{FOL}	V _{SC} =1V,IF ₀ =1mA		-	-	0.95	V
故障输出脉冲宽度	t _{FO}	(备注2)		20	-	-	us
短路保护触发电压 (图5)	V _{SC(ref)}	V _{CC} =15V (备注3)		0.455	0.48	0.505	V
温度松山(图0)	\/	LVIC温度=25℃		0.88	1.13	1.39	V
温度输出(图3)	V _{ОТ}	LVIC温度=90°C		2.63	2.77	2.91	V
	UV _{CCD}	Vcc检测电压		10.5	11.5	12.5	V
低侧欠压保护 (图6)	UV _{CCR}	Vcc复位电压		11.0	12.0	13.0	V
高侧欠压保护 (图7)	UV _{BSD}	V _{BS} 检测电压		10.0	11.0	12.0	V
	UV _{BSR}	V _{BS} 复位电压		10.5	11.5	12.5	V
输入电流	I _{IN}	V _{IN} =5V		0.7	1	1.5	mA

SDM30G60FC 说明书

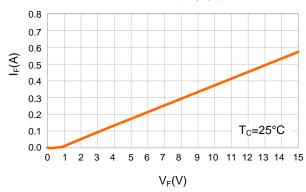

参数	符号	测	试条件	最小值	典型值	最大值	单位
导通阈值电压	V _{IH}	逻辑高电平	输入和COM之间	-	2.1	2.6	V
关断阈值电压	V _{IL}	逻辑低电平	制入作の例之间	0.8	1.3	-	V

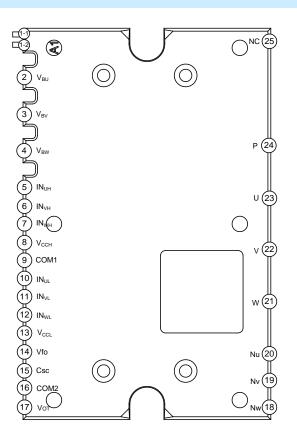
备注2: 短路保护或欠压保护工作时故障信号FO输出。每种保护模式下FO脉宽均不同。短路保护时,FO脉宽为固定值(最小20us),欠压保护时,FO持续输出直到系统恢复正常(最小FO脉宽为20us)。

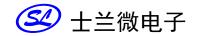
备注3: 短路保护只对低侧有效。

自举二极管部分(除非特殊说明,适用于每个自举二极管)

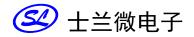
参数	符号	测试条件	最小值	典型值	最大值	单位
正向电压	V_{F}	I _F =100mA, T _C =25°C	-	3.0	-	V
反向恢复时间	t _{rr}	I _F =100mA, T _C =25°C	-	80	-	ns






图 2. 内置自举二极管特性曲线

注: 电阻特性:等效电阻: ~25Ω.


管脚排列图

管脚描述

管脚号	管脚名称	描述
1-1	(Com)	内部公共地端子,无连接
1-2	(Vcc)	内部电源端子,无连接
2	V _{BU}	U 相高侧 IGBT 驱动悬浮供电电压
3	V_{BV}	V 相高侧 IGBT 驱动悬浮供电电压
4	V_{BW}	W 相高侧 IGBT 驱动悬浮供电电压
5	IN _{UH}	U相高侧信号输入
6	IN _{VH}	V相高侧信号输入
7	IN _{WH}	W 相高侧信号输入
8	V _{CCH}	高侧栅极驱动供电电压
9	Com1	模块公共地
10	IN _{UL}	U相低侧信号输入
11	IN_{VL}	V相低侧信号输入
12	IN_WL	W 相低侧信号输入
13	V _{CCL}	低侧栅极驱动供电电压
14	V_{FO}	故障输出
15	Csc	外接电容,用于短路电流检测输入及低通滤波
16	Com2	模块公共地
17	V _{OT}	温度输出端
18	N _W	W 相直流负端
19	N_V	V相直流负端
20	N _U	U相直流负端
21	W	W 相输出
22	V	V相输出
23	U	U相输出
24	Р	直流正端
25	NC	无连接

温度输出功能描述

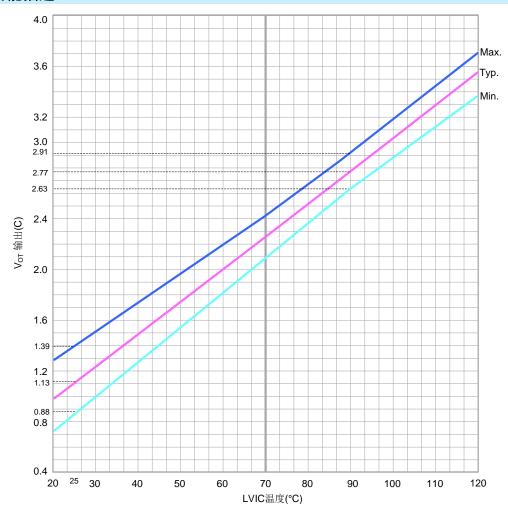


图 3. LVIC 温度-VOT 输出特性

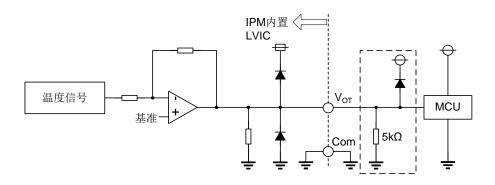
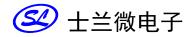



图 4. VOT 输出电路

(1)在低于室温的环境下,建议插入5kΩ或更高(5.1 kΩ推荐)的下拉电阻以实现线性输出特性。当V_{OT} 与 Com(控制地)之间接入下拉电阻时,其产生的电流可以近似为 VOT 输出电压除以下拉电阻的阻值。若只通过V_{OT} 检测工作环境温度是否高于室温时,无需再插入下拉电阻。(2)当 IPM 应用在低压控制的场合下 (例如 MCU 工作电压为 3.3V), VOT 的输出电压在温度急剧上升的情况下可能会大于控制电源电压 3.3V,如果系统是用于低压控制,建议在控制电源和 VOT 输出信号之间接入一个钳位二极管,防止发生过电压损坏。(3)在不使用V_{OT}的情况下,保留 V_{OT} 输出无连接。

控制时序描述

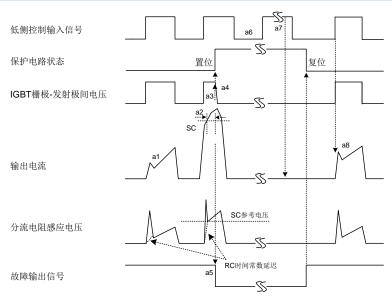


图5. 短路电流保护(仅低侧)

(包含外接分流电阻和RC连接)。

- a1:正常工作:IGBT导通,给负载提供电流。
- a2: 短路电流检测(短路触发)。
- a3: 所有低侧IGBT栅极硬中断。
- a4: 所有低侧IGBT关断。
- a5: 故障输出脚输出一个固定脉宽信号(t_{FO}≥ 20us)。
- a6:输入为 "L": IGBT关断状态。
- a7:输入为 "H":尽管输入为"H",但是在此期间有故障输出信号, IGBT仍处于关断状态。.
- a8: 正常工作: IGBT导通, 电流提供给负载。

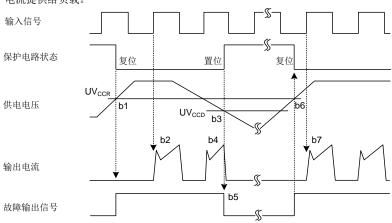
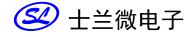



图6. 欠压保护(低侧)

- b1: 供电电压上升至UV_{CCR}, 当下一个输入波形到来时电路开始工作。
- b2: 正常工作: IGBT导通,给负载提供电流。.
- b3: 欠压检测点(UV_{CCD})。
- b4: 无论什么信号输入,所有低侧 IGBT均关断。
- b5: FO脚输出故障信号(t_{FO}≥20us,并在欠压期间持续输出故障信号)
- b6: 欠压复位点(UV_{CCR})。
- b7: 正常工作: IGBT导通,给负载提供电流。

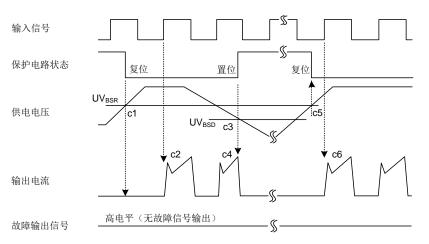
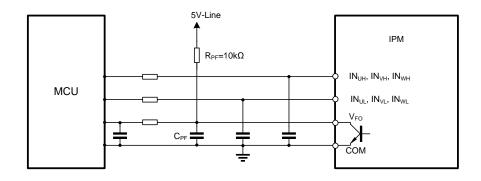
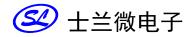
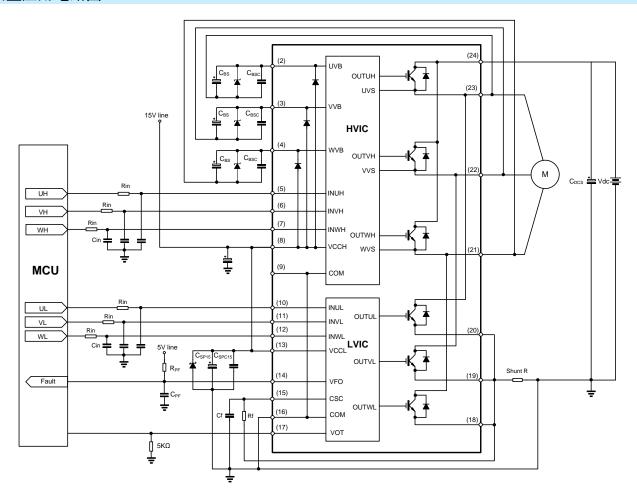


图 7. 欠压保护(高侧)

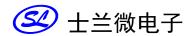
- c1:供电电压上升至UVBSR,当下一个输入信号到来时电路开始工作。.
- c2: 正常工作: IGBT 导通, 给负载提供电流。.
- c3: 欠压检测点 (UVBSD).
- c4: 无论什么信号输入,IGBT均关断,但无故障信号输出。
- c5: 欠压复位点 (UVBSR).
- c6: 正常工作: IGBT导通,给负载提供电流。

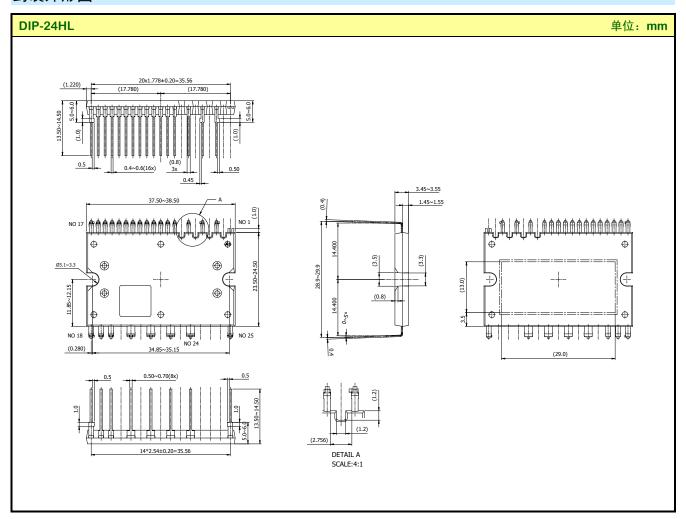

图 8. MCU 输入/输出连接电路(推荐)

注:

每个输入端的RC耦合应随着PWM控制方案和PCB布局来适配。在IPM输入信号部份内置一个5K下拉电阻,因此,当使用外接滤波电路时应注意输入端的压降。

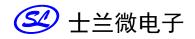


典型应用电路图



备注:

- (1) 各个输入管脚的连线尽量短一点,否则可能引起误动作;
- (2) 输入信号为高电平有效,在HVIC每个通道的输入端都有一个5 KΩ 下拉电阻连接到地;另外可在输入端增加RC滤波电路来预防不正确输入引起的浪涌噪声;
- (3) 为防止浪涌损坏, PN之间建议加一个高频非感性平缓电容(0.1μF~0.22μF), 电容的连线要尽量短;
- (4) 电流检测电阻和IPM之间的连线要尽量短,否则连接电感产生的大浪涌电压可能会造成破坏;
- (5) 每个外接电容都应尽量靠近IPM管脚放置;
- (6) V_{FO} 输出开路,应通过电阻上拉至5V电源, Ifo不得大于8mA;
- (7) 在短路保护电路,请选择时间常数在1.5~2 μs范围内的Rf和Cf,同时Rf和Cf周边的接线都应尽量短。Rf接线应靠近分流电阻。



封装外形图

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

SDM30G60FC 说明书

产品名称: SDM30G60FC 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.0

修改记录:

1. 正式版本发布