

支持USB-PD3.0的升降压控制器

1 特性

● 4管桥式升降压控制器

- ☆ 输入范围3.6V-32V
- ☆ 支持CC/CV模式
- ☆ 支持动态调压/限流
- ☆ 内置2A驱动电路
- ☆ 效率高达98%
- ☆ 可编程软启动,有效限制启动时浪涌
- ☆ 内置抖频技术,有效降低EMI干扰

• 快充协议

- ☆ 支持PD2.0/PD3.0
- ☆ 支持QC2.0/3.0/3+
- ☆ 支持华为FCP/SCP
- ☆ 支持AFC
- ☆ 支持苹果协议
- ☆ 支持BC1.2
- ☆ 可编程PDO功能
- ☆ 支持多口控制
- ☆ 支持VBUS泄放功能

● 支持DFP/Source角色

● QFN5x5-40封装

● 多重保护功能

- ☆ 输入欠压保护
- ☆ 输出过压保护
- ☆ 逐周期限流保护
- ☆ 输出过流/短路保护
- ☆ 过温保护

2 典型应用

- ☆ 储能电源
- ☆ 车充
- ☆ 适配器

3 概述

LYF63303是一款集成PD/QC等全部协议的4管桥式升降 压控制器。自主专利的升降压控制模式,从而实现在升压、 降压、升降压平滑切换;采用COT架构和内置2A的驱动电路, 从而实现高效率的、大功率负载输出;开关频率可编程设置 150kHZ、300kHz、600kHz和1200kHz; VADJ,IADJ引脚用于 动态输出调压和输出恒流控制。

LYF63303内置PD3. 0等全协议,专为Type-C电源侧充电应用;系统通过监控CC引脚,以检测Type-C插入和拔出,同时可提供5V至20V的输出电压;通过监控D+/D-引脚,检测不同的设备需求自动调整输出电压,可提供3. 6V至20V的输出电压;内部集成两个放大器和参考电压,用于电压和电流环路调节。

LFY63303宽范围的输入输出电压和自带协议等特点,有效的降低了系统的复杂性和减少了方案的成本,因此非常适用于移动储能电源、车充、适配器等需要支持Type-C端口输出的应用场景。

4 应用框架图

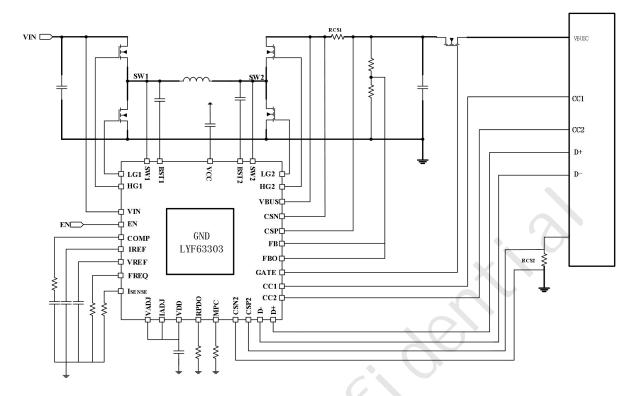


図 ·

5 引脚定义及功能

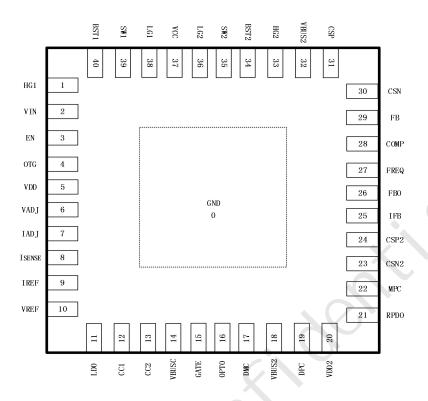


图. 2 引脚图 (QFN5x5-40)

5	川脚	алты
序号	名称	描述
1	HG1	高端驱动1
2	VIN	输入端,接电池电压或输入电压
3	EN	使能脚,设置1:使能 0:关闭,悬空时芯片默认处于使能状态
4	OTG	接IC的LDO引脚
5	VDD	5.4V电源为IC内部系统供电
6	VADJ	接PWM信号或0-2V模拟电压,可动态调接输出电压,不用该功能时接IC的VDD引脚
7	IADJ	接PWM信号或0-2V模拟电压,可动态控制输出恒流点,不用该功能时接IC的VDD引脚
8	ISENSE	放电电流监控脚,可给供外部MCU读取电流信息
9	IREF	电流环路的参考电压
10	VREF	电压环路的参考电压
11	LDO	5V LDO 给外部供电
12	CC1	Type-C 配置通道信号1
13	CC2	Type-C 配置通道信号2
14	VBUSC	Type-C 端口的电压检测
15	GATE	输出控制引脚,可驱动N-MOS
16	ОРТО	输出电压控制脚,用于驱动光耦
17	DMC	Type-C 口DM信号
18	VBUS2	VBUS电压检测脚
19	DPC	Type-C 口DM信号

5	川脚	描述			
序号	名称	加			
20	VDD2	内部系统供电			
21	RPDO	输出功率选择脚,连接100k电阻到地			
22	MPC	多端口功率分配控制脚,连接100k电阻到地			
23	CSN2	电流检测电路,负极输入端			
24	CSP2	电流检测电路,正极输入端			
25	IFB	电流环反馈控制脚			
26	FBO	电压环反馈控制脚			
27	FREQ	频率设置脚 ,直接接地设置150kHz ,接VDD设置300kHz ,从VDD分压可设置600kHz或1.2MHz			
28	COMP	误差放大器输出端			
29	FB	VBUS电压反馈脚,通过VBUS分压电阻设置输出电压			
30	CSN	输出电流检测电路,负极输入端			
31	CSP	输出电流检测电路,正极输入端			
32	VBUS	VBUS电压			
33	HG2	高端MOS驱动2			
34	BST2	高端MOS驱动2的Boost引脚			
35	SW2	开关节点2			
36	LG2	低端MOS驱动2			
37	VCC	驱动电源			
38	LG1	低端MOS驱动1			
39	SW1	开关节点1			
40	BST1	高端MOS驱动1的Boost引脚			
0	GND	模拟地			

6 订购信息

器件名称	订购信息	封装	包装	丝印
LYF63303	LYF63303IQN40A	QFN5x5 - 40	5000	63303 RAAYMD

LYF63303: Part Number

RAAYMD: RAA: LOT NO.; YMD: Package Date

7 规格参数

7.1 极限参数^(备注 1)

参数	最小	最大	单位
VIN, VBUS, CSN, CSP, SW1, SW2	-0.3	40	
HG1, BST1 to SW1	-0.3	7	
HG2, BST2 to SW2	-0.3	7	
LG1, LG2, VCC, VDD2 to GND	-0.3	7	
CSP to CSN	-0.3	0.6	V
VBUS to CSP, CSN	-0.3	0.6	
CC1,CC2,D-,D+,OPTO	-0.3	24	
GATE,VBUS2,VBUSC	-0.3	35	
Other Pins to GND	-0.3	6	

7.2 操作范围

符号	参数	最小	最大	单位
T _{ST}	存储温度范围	-65	150	°C
TJ	结温		+150	°C
T∟	引脚温度		+260	°C
V _{ESD}	HBM 人体模型		2	kV

7.3 推荐工作条件 (^{备注2)}

	参数	最小	最大	单位
输入电压	VIN	3.6	30	V
温度	结温范围,T」	-40	+125	°C

7.4 热阻参数^(备注 3)

符号	描述	QFN5x5-40	单位
θја	芯片到环境间的热阻	44	°C/W
θυς	芯片到外壳间的热阻	9	C/VV

备注:

- 1) 超过正常范围可能会损坏IC。
- 2) 超出推荐范围外应用可能会损坏IC。
- 3) 在1盎司铜箔上测试。

7.5 电气特性 (VIN = 12V, T_J =25°C, 除特别说明.)

符号	参数	条件	最小	典型	最大	单位
VIN	Input voltage		3.6		30	V
1 1/11/1	VIN Shutdown Current	EN=0V, VIN=7.2V		15		uA
$I_{Q_{-}}VIN$	VIN Supply Current	No Switching, FB=2.1V		1000		uA
VBUS	Bus line voltage	İ	3.6		22	V
V_{VCC}	Driver power supply voltage	VIN =15V		6.6		V
V_{VDD}	Control core power supply voltage	VIN =15V		5.4		V
V_{LDO}	LDO output voltage	VIN =15V		5		V
I _{LDO}	LDO output current	V _{LDO} =5V			55	mA
VDD2	Input voltage		3.2		6.8	V
VDD2_SUP	VDD2 Supply Current	VDD2=5V,Nothing Attach	66	100	136	uA
VDD2 _{UV}	VDD2 UVLO Rising			3.5		V
	Hysteresis			300		mV
UVLO/EN						
VIN_uv	VIN UVLO Rising			3.5		V
• • • • • • • • • • • • • • • • • • •	Hysteresis			300		mV
V_{EN_UV}	Operation Threshold		1.1	1.2	1.3	V
	Hysteresis			200		mV
Control loop						
V _{FB}	VFB regulation voltage	FB voltage	1.96	2	2.04	V
G _{mEA}	Error amplifier gm			450		uS
Isink	COMP sink/source current	VFB=VREF+100mV		15		uA
ISOURCE	COMP source current	VFB=VREF-100mV		20		uA
I _{FB}	FB bias current	FB in regulation			100	nA
Frequency						
		FREQ 0-0.4V, short FREQ pin to GND.		150		kHz
F _{sw}	Switching Frequency	FREQ 1.8-5.4V, short		300		kHz
1 300	Switching Frequency	FREQ pin to VDD.				
		FREQ 0.4-0.85V	600			kHz
0		FREQ 0.85-1.8V	<u> </u>	1200		kHz
Current Limit	I Dura anno anno anti timit	1				
Icclim_bus	Bus average current Limit, V _{CSP} - V _{CSN}			40		mV
NMOS Driver						
I _{HDRV1,2} (Note 4)	Driver peak source current	V _{BST} - V _{SW} =6.6V		2		Α
IHDRV1,2`	Driver peak sink current	V _{BST} - V _{SW} =6.6V		2		Α
. (Note 4)	Driver peak source current	VCC=6.6V		2		Α
I _{LDRV1,2} (Note 4)	Driver peak sink current	VCC=6.6V		2		Α
	UVLO			2		V
V _{BSTUV}	Hysteresis			300		mV
Output Protectio						
V _{OVP}	Output over voltage threshold			110		%
V _{UVP}	Output under voltage threshold	1		50		%
VADJ, IADJ	Takpar ander remage ameened	I	<u> </u>			,,,
-	VPWM low voltage		Ι		0.4	V
V _{TH_VADJ} (Note 4)	VPWM high voltage		2.5		- 0.4	V
	IPWM low voltage		2.5		0.4	V
V _{TH_IADJ} (Note 4)	IPWM high voltage	1	2.5		0.4	V
T _{SD} ^(Note 4)	Thermal Shutdown Threshold		2.5	150		°C
			-	150		°C
T _{HYS} (Note 4)	Thermal Shutdown Hysteresis	<u> </u>	<u> </u>	20		- U
N-MOSFET Gate		1	1			
Vgate	Sourcing Voltage between gate and VBUS	VIN=3.2V to 6.8V	5		15	V

电气特性(续)

符号	参数	条件	最小	典型	最大	单位
USB Type-C						
Icc_3A	SRC CC Current		304	330	356	uA
V_{DPDNOV}	D+/D- OV Threshold	In DCP mode		7		V
V_DPDNOV	D+/D- OV Threshold	In HVDCP mode		4		V
$V_{\text{CCOV-rising}}$	CC OV Rising Hysteresis			1.04*VII 300	N .	V mV
High Voltage Ded	icated Charging Port (HVDCP)					
VDAT(REF)	Data Detect Voltage		0.25	0.325	0.4	V
Vsel_ref	Output Voltage Selection Reference		1.8	2.0	2.2	V
TGLITCH(BC)-DPA-H	D+ High Glitch Filter Time		1000	1250	1500	ms
TGLITCH(BC)-DNA-L	D- Low Glitch Filter Time			1		ms
TGLITCH(V) CHANGE	Output Voltage Glitch Filter Time		20	40	60	ms
RDNA(DWN)	D- Pull-Down Resistance	7()		20		kΩ
TGLITCH-CONTCHANGE	Continuous Mode Glitch Filter Time		100		200	ms
		V _{DD2} =3.2 to 6.4V				
RDAT-LKG	D+ Leakage Resistance	VDPA=0.6-3.6V Switch	300	500	800	kΩ
		SW1=off				
Rds_on_n1	Switch SW1 On-Resistance	V _{DD2} =5V,SW1=200μA			40	Ω
		Iυρ =0μA (5V),40μA (9V),				
		70μA (12V),100μA (15V),				
IUP, IDOWN	UP/Down Current Step	150μA (20V)		2		uA
		IDOWN=14μA (3.6V)				
DCP Charging Mo	ode				•	
V _{D+} V _{D-}	D+_0.48v / D0.48v Line Output Voltage		0.44	0.48	0.52	V
RD+-D-	D+_0.48v / D0.48v Line Output Impedance			900		kΩ
Apple Mode					•	
V _{D+} V _{D-}	D+_2.7v / D2.7v Line Output Voltage		2.57	2.7	2.84	V
RD+-D-	D+_2.7v / D2.7v Line Output Impedance			33.6		kΩ
D- Section (FCP o	r SCP)					
VTX-VOH	D- Tx Valid Output High		2.55		3.6	V
VTX-VOL	D- Tx Valid Output Low				0.3	V
V _{RX-VIH}	D- Rx Valid Output High		1.4		3.6	V
Vrx-vil	D- Rx Valid Output Low				1.0	V
RPD	D- Output Pull-Low Resistance		400	500	600	Ω
UI	Unit Interval for PHY Communication	Fclk=125kHz	144	160	180	us

电气特性(续)

符号	参数	条	件	最小 典型	最大	单位
Regulator Section						
VREF	Voltage Control Loop Reference			1.2	1	V
			In SCP	60		
VCS+	Current control Loop Reference	RCS=10mR	In QC	36		mV
			In PD	120%*	lout	
Іорто	OPTO Sinking Current			27	80	mA

Note:

4) 设计中保证,生产时不测试。

8 功能描述

8.1 升降压控制器

LYF63303 是集成了协议的升降压控制器。升降压采用同步4管桥式架构,自主专利的控制方式,根据输入、输出电压自动地在升压、降压及升降压模式间平滑切换。LYF63303采用了 COT 控制模式,工作频率可通过外部设置,内置 CC/CV 环简化了外围器件,有效降低设计难度和设计周期。

8.1.1 使能开关

当 EN 引脚电压大于1.2V 时,LYF63303开始工作;当 EN 引脚电压低于待机阈值(典型值1.1V)LYF63303停止工作,此时只有 LDO 有输出电压。EN 内部已拉高,悬空时,IC 处于工作状态。

8.1.2 频率设置

LYF63303 工作频率可通过 FREQ 引脚来设置。当 FREQ 接 GND 时设置为150kHz;当 FREQ 接 VDD 时设置为300kHz;当 FREQ 通过 VDD 与 GND 分压在0.4V 至0.85V 时设置为600kHz;当 FREQ 通过 VDD 与 GND 分压在0.85V 至1.5V 时设置为1200kHz。

8.1.3 输出限流设置

LYF63303采用CC/CV控制模式,对输出平均电流进行检测,当负载电流小于设定值时,IC工作于恒压模式,输出电压为设定电压要求,当负载电流高于设定值时,IC工作于恒流模式,输出电压由外部负载阻抗决定。LYF63303通过检测CSP和CSN引脚间的电压与内部40mV基准进行比较,当大于40mV时系统调节COMP电压以降低输出电流。恒流电流计算公式由式1:

$$I_{CL(AVG)} = \frac{40 \, mV}{R_{cs}} \tag{1}$$

8.1.4 过流保护和短路保护

LYF63303内置逐周期电流限制,以防止过流和短路的发生。当输出电流到达恒流点的1.2倍时,系统进入过流保护;当 VBUS 电压降低到 UV 阈值时,系统进入短路保护;过流和短路保护是以打嗝模式进行。

8.1.5 过温保护

LYF63303内置热保护电路,当内部结温度到达150°时,热保护电路触发关闭驱动电路,同时软启动电容放电。当温度 降低到关闭阈值15°C 以下时,IC 自动重新启动。

8.1.6 VREF 和 IREF

VREF 引脚是电压环路的参考电压,当 VADJ 连接 VDD 时 VREF 上电压是2V,当 VADJ 连接的是 PWM 信号时,内部斩波电路、电阻与外部电容构成的滤波电路最终得到参考电压,同时 VREF 上电容也作为软启动电容,建议使用100nF或以上电容;IREF 与 VREF 机制相同。

8.2 协议

LYF63303集成的 PD3.0和 USB 高压专用充电协议(HVDCP)协议,可用于高通的 QC2.0/3.0/3+、AFC、FCP 和 SCP、Apple 等协议规范。

8.2.1 PD 协议

LYF63303支持 PD3.0协议同时兼容 PD2.0协议,可输出5V/9V/12V/15V/20V 电压。通过设置 RPDO 电阻可选择输出不同功率档。同时,它还支持苹果20W(9V/2.22A)充电。

8.2.1 QC 协议

LYF63303支持 QC2.0/3.0/3+协议。通过设置 RPDO 电阻可选择设置为 A 类或 B 类。QC2.0 A 类(5V/9V/12V)和 B 类(5V/9V/12V/20V)输出电压范围;QC3.0 A 类(3.6V 至12V,200mV)和 B 类(3.6V 至20V,200mV)输出电压范围;QC3+的步进电压为20mV。

Rpdo	QC mode	Rated Power	5V	9V	12V	15V	20V	Power Reduction	QC mode	5V	9V	12V	15V	20V
open	Class A	25W	3A	2. 77A				15W	5V	3A				
680k	Class A	20W	3A	2. 22A				15W	5V	3A				
470k	Class B	30W	3A	3A	2. 5A	2A	1.5A	20W	Class A	3A	3A	2.22A	1.67A	
220k	Class A	18W	3A	3A	1.5A			15W	5V	3A				
100k	Class B	30W	3A	3A	2. 5A	2A	1.5A	15W	5V	3A				
68k	Class B	45W	3A	3A	3A	3A	2.25A	20W	Class A	3A	2. 22A	1.67A		
47k	Class B	45W	3A	3A	3A	3A	2. 25A	30W	Class B	3A	3A	2. 5A	2A	1.5A
22k	Class B	60W	3A	3A	3A	3A	3A	45W	Class B	3A	3A	3A	3A	2.25A
10k	Class B	60W	3A	3A	3A	3A	3A	30W	Class B	3A	3A	2. 5A	2A	1.5A
0	Class A	20W	3A	2. 22A	1.67A			15W	5V	3A				

8.2.1 AFC/FCP/SCP 协议

YF63303支持 AFC 协议,输出电压范围为5V/9V;支持 FCP 协议,输出电压范围为5V/9V/12V;还支持 SCP 协议,充电能力为4.5V/5A。

8.3 多端口控制

LYF63303支持多端口输出实现功率分配。两个或多个 MPC 连接起来,通过100k 电阻到地即可。

8.4 VDD2供电

VDD2引脚内置6.4V 稳压二极管 ,同时 ,通过外接限流电阻 ,以支持更宽范围的输出电压。推荐电阻及电容为1.2k 和470nF。

8.5 CC1/CC2引脚过压保护

LYF63303支持 CC1/CC2引脚的过压保护。异常情况下,当外部电压接触到 CC 引脚时,为了保护设备不受损坏,芯片会控制输出电压返回到默认输出电压5V。

8.6 D+/D-引脚过压保护

LYF63303支持 D+/D-引脚的过压保护。异常情况下,当外部电压接触到 D+/D-引脚且大于7.5V 时,为了保护设备不受损坏,芯片会控制输出电压返回到默认输出电压5V,如果是在 HVDCP 模式下,D+/D-引脚过压保护为4V。

9 应用设计

9.1 输出电压设置

LYF63303输出电压由外部反馈分压电阻设置,电阻精度推荐1%。反馈信号与内部误差放大器2V基准比较。输出电压公式如下式:

$$V_{OUT} = 2V * \left(1 + \frac{R_{up}}{R_{down}}\right) \tag{2}$$

实际应用中,由于需要协议调压,Vout 应设置5V 且 Rup 必须选择100k。

9.2 电感的选择

在电感设计的时候,需要先确定频率,通过外围电阻选所需频率后,再选定电感纹波率一般选择0.3-0.5,最后确定在最恶劣的工况下计算所需电感量。在 CCM 模式下计算公式如下:

$$L_{BOOST} > \frac{V_{IN(MIN)}^{2*}(V_{OUT} - V_{IN(MIN)})^* 1000}{f^* \Delta l_1^* V_{OUT}^2} uH$$
(3)

$$L_{\text{BUCK}} > \frac{V_{\text{OUT}}^*(V_{\text{IN}(\text{MAX})} \cdot V_{\text{OUT}})^*1000}{f^*\Delta I_L^*V_{\text{IN}(\text{MAX})}} \text{ uH}$$
(4)

这里: f 是选择的工作频率, kHz

VIN_(MIN) 是最小输入电压, V

VIN_(MAX) 是最大输入电压, V

Vout 是设置输出电压, V

ΔIL 是电感纹波电流, A, 通常选择20~40%的最大输出电流

为了提高效率,通常还需要考虑电感材质,体积等因素。

9.3 功率 MOS 管的选择

LYF63303应用中有5个 NMOS。MOS 管选择需要关注 VBR、VDS、开通阈值 Vth、导通电阻 RDS、输入电容 Ciss 等参数。驱动电压由 IC 的 VCC 提供6.6V,最大驱动电流2A,使得 MOS 选择更加灵活。

9.4 输入/输出电容的选择

IC 工作升压模式时,输入电流是连续的。工作在降压模式时输入电流不是连续的,所以以降压模式来计算输入电容能处理的最大纹波电流有效值,其公式如下:

$$I_{CIN} = I_{OUT(MAX)} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
 (5)

从上式子可知,当V_{IN} = 2V_{OUT} 时,出现最大值,此时,I_{CIN(MAX)} = I_{OUT(MAX)}/2.

当在升压模式时,输出电流不是连续的,需要输出电容为负载提供能量。所以以升压最恶劣的工况来计算输出电容的容值。 输出电压的纹波可以由以下公式来计算:

$$\Delta V_{\text{(BOOST,Cap)}} = \frac{I_{\text{OUT}(\text{MAX})}^*(V_{\text{OUT}} - V_{\text{IN(MIN)}})}{C_{\text{OUT}}^*V_{\text{OUT}}^*f} V$$
 (6)

这里的 Cour 是输出电容的容值。

另外由于电容的ESR 引起的电压纹波也必须考虑进来,其计算公式如下:

$$\Delta V_{(BOOST,ESR)} = I_{OUT(MAX,BOOST)} *ESR$$
 (7)

在降压模式下,输出电压纹波计算公式如下:

$$\Delta V_{OUT} \leq \Delta I_{L}^{*} \left(ESR + \frac{1}{8^{*}f^{*}C_{OUT}} \right)$$
 (8)

10 PCB LAYOUT

10.1 LAYOUT 原则

布局是良好电源设计的关键部分。以下的指导方针将帮助用户设计出具有最佳的功率转换性能、热性能和最小化产生不需要的 EMI 的 PCB。

- 1. 反馈网络,电阻 Rup 和 Rdown,应保持靠近 FB 引脚。保持 VBUS 反馈网络远离噪声节点,最好通过屏蔽层另一侧的一层。
- 2. 输入/输出旁路电容器必须放置在尽可能靠近 VIN/VBUS 引脚和接地的位置。有必要在 VIN 和 VBUS 附近放置陶瓷电容,以降低高频干扰的注入。
- 3. 对于电流采样信号脚(CSP、CSN)、(CSP2、CSN2)需要直接连接到检测电阻的两个端子上,尽可能走差分线,并且远离 BST1、BST2、SW1、SW2、HG1、HG2、LG1、LG2 等噪声节点。
- 4. 功率环路、驱动环路最小化

10.2 应用案例

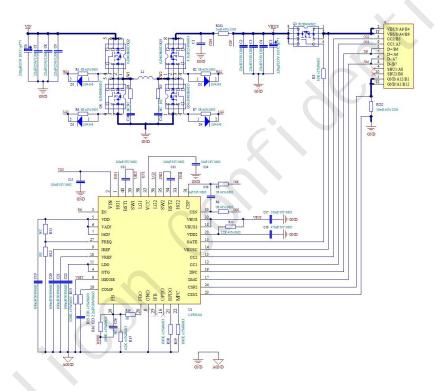
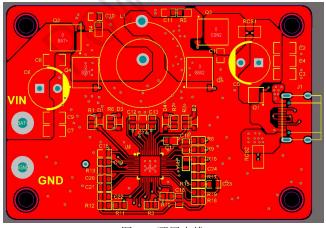



图. 3 原理图

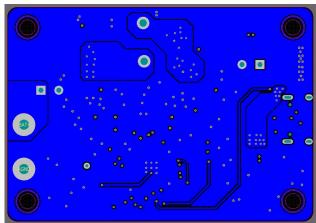
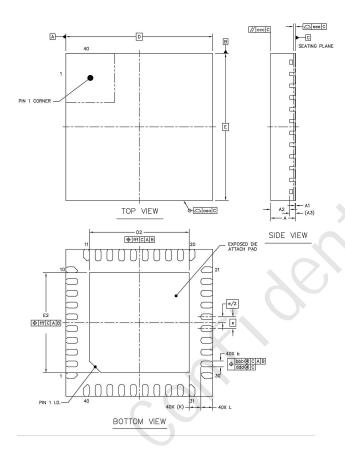



图. 5 底层走线

11 封装信息

11.1 封装图

11.2 封装尺寸

2 El AZ/CI	Dimension in Millimeters								
Symbol	MIN	NOM	MAX						
A	0.8	0.85	0. 9						
A1	0	0.02	0.05						
A2		0.65							
A3	0. 203 REF								
b	0. 15	0. 2	0.25						
D		5 BSC							
Е		5 BSC							
е		0.4 BSC							
D2	3. 3	3. 4	3. 5						
E2	3. 3	3. 4	3. 5						
L	0.3 0.4 0.5								
K		0.4 REF							

12 版本信息

版本	日期	撰写	页数	更新说明
Rev.1.0	2019-02-18	Victor	14	首次发布