

SHEN ZHEN XIN FEI HONG ELECTRONICS CO.,LTD

FH8261-G3J/M/P

1节锂离子/锂聚合物电池保护 IC

FH8261 系列内置有高精度电压检测电路和延迟电路,通过检测电池的电压,电流实现对电池的过充电,过放电,过电流,短路保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

■ 功能特点

1) 高精度电压检测功能:

•	过充电检测电压	3.5 V ~ 4.5 V	精度 ±25 mV
•	过充电迟滞电压	0.2 V	精度 ±50 mV
•	过放电检测电压	2.0 V ~ 3.2 V	精度 ±80 mV
•	过放电迟滞电压	0.6 V	精度 ±100 mV

2) 放电过电流检测功能:

• 过电流检测电压	0.05V ~ 0.22 V	精度 ±15mV
● 短路检测电压	1.0 V	精度 ±30%
3) 充电过流检测电压	-0.10V ~ -0.20V	精度 ±30%

4) 负载检测功能

5) 充电器检测功能

6) 0V 充电功能

7) 低电流消耗:

•	工作模式	2.2 μA (典型值)	$(Ta = +25^{\circ}C)$
•	过放电时耗电流(有过放自恢复功能)	0.7 μA (典型值)	(Ta = +25°C)
•	休眠电流(有休眠功能)	0.05 μA (典型值)	$(Ta = +25^{\circ}C)$

8) 无铅、无卤素。

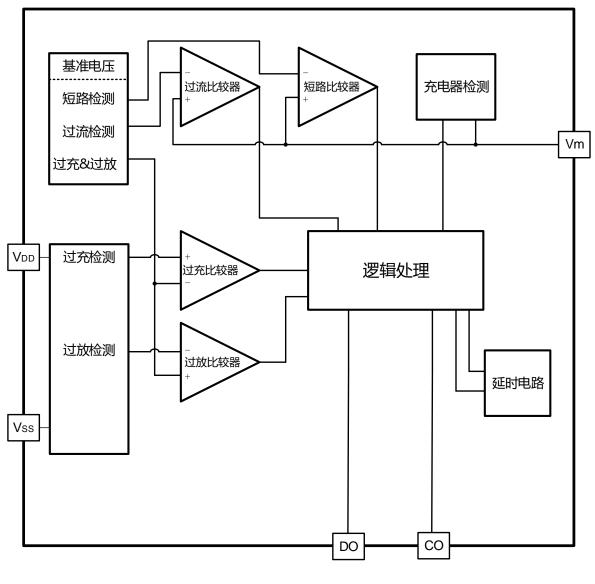
■ 应用领域

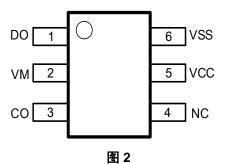
- 手机电池
- 儿童玩具

■ 封装

• SOT23-6

■ 系统功能框图




图 1

■ 产品型号

参数产品名	过充电 保护电压 V _{oc}	过充电 解除电压 Vocr	过放电 保护电压 Voo	过放电 解除电压 Vodr	放电过流 V _{EC1}	短路 VsHORT	充电过电流 V _{CHA}
FH8261-G3J	4.280 V	4.080 V	3.00 V	3.00 V	0.080 V	1.00 V	-0.100 V
FH8261-G3M	4.280 V	4.080 V	2.80 V	3.00 V	0.10 V	1.00 V	-0.100 V
FH8261-G3P	4.250 V	4.050 V	2.40 V	3.00 V	0.15 V	1.00 V	-0.150 V

表 1

■ 引脚排列图

引脚号	符号	描述	
1	DO	放电 MOSFET 控制端子	
2	VM	充放电电流检测端子,与充电器或负载的负极连接	
3	СО	充电 MOSFET 控制端子	
4	NC	No connection	
5	VCC	电源输入端, 与供电电源(电池)的正极连接	
6	VSS	电源接地端, 与供电电源(电池)的负极相连	

表 2

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

			•	
项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	-0.3 ~ 6.0	V
VM 端输入电压	VM	VM	VCC-15 to VCC+0.3	V
工作环境温度	T _{OPR}	-	-40 ~ 85	°C
保存温度	Тѕтс	-	-40 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C,)

J	页目	符号	测试条件	最小值	典型值	最大值	单位
芯片电源电压 正常工作电流 休眠电流		VCC	-	1.5	-	6.0	V
		Ivcc	VCC=3.5V	-	2.2	-	μA
		I _{PDN}	VCC =1.5V	-	0.05	-	μΑ
过放	后电流	I _{OPED}	VCC =1.5V	-	0.7	-	μA
	保护电压	Voc	VCC =3.5→4.5V	V _{OC} -0.025	Voc	V _{OC} +0.025	V
过 充	解除电压	Vocr	VCC =4.5→3.5V	Vocr -0.050	Vocr	Vocr +0.050	V
电	保护延时	T _{OC}	VCC =3.5→4.5V	40	80	160	ms
	解除延时	T _{OCR}	VCC =4.5→3.5V	5	20	40	μs
	保护电压	Vod	VC5=3.5→2.0V	V _{OD} 0.080	Vod	V _{OD} +0.080	V
过 放	解除电压	V _{ODR}	VCC =2.0→3.5V	Vodr -0.100	Vodr	Vodr +0.100	V
电	保护延时	Tod	VCC =3.5→2.0V	20	40	80	ms
	解除延时	T _O DR	VCC =2.0→3.5V	5	20	40	μs
	保护电压	V _{EC}	VM-VSS=0→0.20V	V _{EC} -0.015	V _{EC}	V _{EC} +0.015	V
放电 过流	保护延时	TEC	VM-VSS=0→0.20V	5	10	24	ms
	解除延时	T _{ECR}	VM VSS=0.20→0V	1.0	2.0	4.0	ms
	保护电压	Vсна	VSS-VM=0→0.30V	V _{CHA} -30%	Vсна	V +30%	V
充电 过流	保护延时	T _{CHA}	VSS-VM=0→0.30V	5	10	24	ms
	解除延时	Tchar	VSS-VM=0.30V→0	1.0	2.0	4.0	ms
	保护电压	VSHORT	VM -VSS=0→1.5V	Vshort -30%	V _{SHORT}	V _{SHORT} +30%	V
短路	保护延时	T _{SHORT}	VM VSS=0→1.5V	150	300	600	μs
	解除延时	TSHORTR	VM -VSS=1.5V→0V	1.0	2.0	4.0	ms
0\ 充电器	/ 充电 起始电压	V _{0VCH}	允许向 0V 电池充电功能	-	0.7	-	V

表 4

■ 功能说明

1. 过充电状态

任意一个电池电压上升到 Voc 以上并持续了一段时间 Toc, CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这就称为过充电状态。所有电池电压降低到过充电解除电压 VocR 以下并持续了一段时间 TocR,就会解除过充电状态。恢复为正常状态。

进入过充电状态后,要解除过充电状态,恢复正常状态,有两种方法:

- 1) 无论是否连接充电器,由于自放电使电池电压降低到过充电解除电压 Voca 以下时,过充电状态释放,恢复到正常工作状态。
- 2) 连接负载,如果 Vocr<VCC<Voc, VvM>Vec,恢复到正常工作状态,此功能称作负载检测功能。

2. 过放电状态

任意一个电池电压降低到 Vop 以下并持续了一段时间 Top, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这就称为过放电状态。所有电池电压上升到过放电解除电压 Vop 以上并持续了一段时间 Top, 就会解除过放电状态,恢复为正常状态。

进入过放电状态后,要解除过放电状态,恢复正常状态,有三种方法:

- 1) 连接充电器,若 VM 端子电压低于充电过流检测电压(V_{CHA}),当电池电压高于过放电检测电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM 端子电压高于充电过流检测电压(VCHA),当电池电压高于过放电解除电压(VODR)时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,如果电池电压自恢复到高于过放电解除电压(VODR)时,过放电状态解除,恢复到正常工作状态

3. 放电过流状态

电池处于放电状态时,VM 端电压随着放电电流的增大而增大,当 VM 端电压高于 VEC 并持续了一段时间 TEC, 芯片认为出现了放电过流;当 VM 端电压高于 VSHORT 并持续了一段时间 TSHORT, 芯片认为出现了短路。上述 2 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,断开负载即可恢复正常状态。

4. 充电过流检测

正常工作状态下的电池,在充电过程中,如果 VM 端子电压低于充电过流检测电压(VcHA),并且这种状态持续的时间超过充电过流检测延迟时间(TcHA),则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使 VM 端子电压高于充电过流检测电压(VcHA)时,充电过流状态被解除,恢复到正常工作状态。

5. 0V 充电功能

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(CO 端子打开),开始充电。这时,放电控制 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(Vod)时,IC 进入正常工作状态.

■ 应用电路

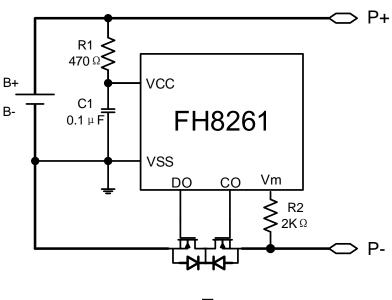
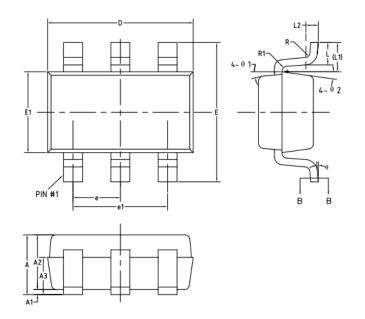
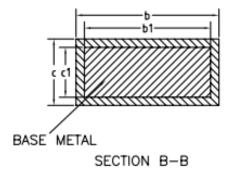



图 3

器件标识	典型值	参数范围	单位
R ₁	470	330 ~ 1000	Ω
R ₂	2	0.1 ~ 3	kΩ
C ₁	0.1	≥ 0.01, 16V	μF


注意: R1, R2 不可省略

SOT23-6 封装尺寸

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.45
A1	0	-	0.15
A2	0.90	1.15	1.30
A3	0.60	0.65	0.70
Ь	0.39	ı	0.49
b1	0.35	0.40	0.45
С	0.08	_	0.22
c1	0.08	0.13	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.70
e	0.85	0.95	1.05
e1	1.80	1.90	2.00
L	0.35	0.45	0.60
L1	0.35	0.60	0.85
L2		0.25BSC	
R	0.10	_	_
R1	0.10	_	0.25
θ	0,	ı	8*
θ 1	7*	9.	11'
θ 2	8*	10*	12*

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 C DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.