

FH8209

单串高精度二合一锂电池保护芯片(可外接MOS)

FH8209 内置有高精度电压检测电路和延迟电路, 通过检测电池的电压、电流,实现对电池的过充电、 过放电、 过电流等保护与一身, 同时鉴于CPC-8的创新型封装, FH8209把低内阻的N-MOS也集封在一起,而且又能兼容外扩MOS的需求,方便客户应对不同电流需要。

■ 功能特点

1) 高精度电压检测功能:

•	过充电检测电压	4.250V	精度 ±25 mV
•	过充电恢复电压	4.050V	精度 ±50 mV
•	过放电检测电压	2.800V	精度 ±80 mV
•	过放电恢复电压	3.000V	精度 ±100mV

2) 放电过电流检测功能:

•	过电流检测电压	100mV	精度 ±15 mV
•	短路检测电压	1.000V	精度 ±30%
	充电过流检测电压	-100mV	精度 ±30%

4) 负载检测功能

3)

- 5) 充电器检测功能
- 6) 0V 充电功能
- 7) 过放锁定(休眠功能)
- 8) 过充锁定
- 9) 低电流消耗:

•	工作模式	3 μA (典型值) (Ta = +25℃
•	过放电时耗电流(有过放自恢复功能)	0.7 μA (典型值) (Ta = +25℃
•	休眠电流(有休眠功能)	0.1 μA (典型值) (Ta =+25℃

- 10) 高耐压内置MOSFET: BVpss (MIN) 20V
- 11) 超小型封装: CPC-8
- 12) 无铅、无卤素。

■ 应用领域

• 锂离子可充电电池

■ 封装/管脚排列

CPC-8

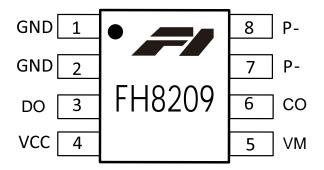


图 1 FH8209 管脚排列图 (不成比例)

功能框架图

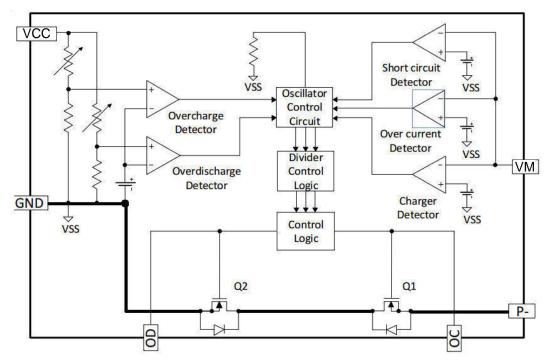


图 2

引脚描述 表 2

引脚名称	引脚序号	1/0	引脚功能	
DO	3	的源极(S 极)相连,从而检测充/放电电流在两个 N MOS 管的压降。	放电控制输出端;	
DO	3		与外部放电控制 N MOS 管的栅极(G 极)相连。	
			充/放电电流检测输入端;	
\/N.4	VM 5 1	该引脚通过一个限流电阻(一般为 $1K\Omega$)与外部充电控制 N MOS 管		
VIVI		I	的源极(S 极)相连,从而检测充/放电电流在两个 N MOS 管上形成	
			的压降。	
СО	6	0	充电控制输出端;与外部充电控制 N MOS 管的栅极(G 极)相连。	
P- 7、8 POW		POW	充电器负极;与被保护电路的负极相连。	
\/CC	4	DOW	电源输入端;与供电电源(电池)的正极连接,该引脚需用一个 0.1 µ F	
VCC	VCC 4 POW 的瓷片电容去藕。	的瓷片电容去藕。		
GND	1、2	POW	电源接地端;与供电电源(电池)的负极相连。	

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	适用端子	绝对最大额定值	单位
电源电压	VCC	VCC	0.3 ~ 6.0	V
VM 端输入电压	VM	VM	VCC 15 to VCC+0.3	V
工作环境温度	Topr		40 ~ 85	°C
保存温度	T _{STG}		40 ~ 125	°C

表 3

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C,)

项目		符号	测试条件	最小值	典型值	最大值	单位
芯片电源电压		VCC	_	1.5	_	6.0	V
正常工作电流		Ivcc	VCC=3.5V	-	3	-	μΑ
	消耗电流	I PDN	VCC =1.5V	-	0.1	-	μΑ
过放电	时消耗电流 	I _{OPED}	VCC =1.5V	-	0.7	-	μA
	保护电压	Voc	VCC =3.5→4.5V	4.225	4.250	4.275	V
过 充	解除电压	V _{OCR}	VCC =4.5→3.5V	4.000	4.050	4.100	V
电	保护延时	Toc	VCC =3.5→4.5 V	40	80	160	m
	解除延时	T _{OCR}	VCC =4.5→3.5V	5	20	40	μ
	保护电压	V _O D	VCC=3.5→2.0V	2.720	2.800	2.880	٧
过 放	解除电压	Vodr	VCC =2.0→3.5V	2.900	3.000	3.100	V
电	保护延时	Тор	VCC =3.5→2.0 V	20	40	80	m
	解除延时	T _{ODR}	VCC =2.0→3.5V	5	20	40	μ
	保护电压	V _{EC}	VM VSS=0→0.30V	85	100	115	m'
放电 过流	保护延时	T _{EC}	VM-VSS=0→0.30V	5	10	24	m
	解除延时	Tecr	VM-VSS=0.30→0V	1.0	2.0	4.0	m
	保护电压	Vсна	VSS-VM=0→0.30V	-70	-100	-130	m'
充电 过流	保护延时	Тсна	VSS-VM=0→0.30V	5	10	24	m
	解除延时	T _{CHAR}	VSS VM=0.30V→0	1.0	2.0	4.0	m
	保护电压	V _{SHORT}	VM VSS=0→1.5V	0.700	1.000	1.300	V
短路	保护延时	T _{SHORT}	VM -VSS=0→1.5V	150	300	600	μ
	解除延时	Tshortr	VM -VSS=1.5V→0V	1.0	2.0	4.0	m
0V 充电 充电器起始电压		Vovch	允许向 0V 电池充电功能	-	0.7	-	V
短路保护电流 Ish		Ishort	VCC=4.0V	16	25	32	А
寸流检测		loc	VCC=3.6V	1.95	2.5	3.11	Α
内部MOSFET耐压 BV _{DSS}			V _{GS} =0V I _D 250uA	20			V
为部MOS	SFET内阻	Ron	VCC=3.6V@1A	37	40	43	mg

注: 1. 除非特别注明, 所有电压值均相对于GND而言

2. 参见应用线路图

表 4

■ 功能说明

1. 过充电状态

电池电压上升到 V_{OC} 以上并持续了一段时间 T_{OC}, CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这就称为过充电状态。电池电压降低到过充电解除电压 V_{OCR} 以下并持续了一段时间 T_{OCR},就会解除过充电状态,恢复为正常状态(过充是否锁定,决定是否要断开充电器才恢复为正常状态,<mark>芯片过充是否锁定,请查看功能特点说明</mark>)。

进入过充电状态后, 要解除过充电状态, 恢复正常状态, 有以下方法

- 1) 过充锁定:断开充电器,由于自放电使电池电压降低到过充电解除电压 V_{OCR} 以下时,过充电状态释放,恢复到正常工作状态。
- 2) 过充不锁定:不论是否断开充电器,由于自放电使电池电压降低到过充电解除电压 Voc 以下时,过充电状态释放,恢复到正常工作状态。
- 3) 连接负载,如果 Vocr<VCC<Voc, V_{VM}>V_{EC},恢复到正常工作状态,此功能称作负载检测功能。

2. 讨放电状态

电池电压降低到 Vop 以下并持续了一段时间 Top, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这就称为过放电状态。电池电压上升到过放电解除电压 Vop 以上并持续了一段时间 Top, 就会解除过放电状态,恢复为正常状态。(过放是否锁定,决定是否要接入充电器才恢复为正常状态, 芯片过放是否锁定,请查看功能特点说明)。

进入过放电状态后,要解除过放电状态,恢复正常状态,有以下方法:

- 1) 连接充电器,若 VM 端子电压低于充电过流检测电压(VcHA),当电池电压高于过放电检测电压(VoD)时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 VM 端子电压高于充电过流检测电压(V_{CHA}),当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态。

3. 放电过流状态

电池处于放电状态时,VM 端电压随着放电电流的增大而增大,当 VM 端电压高于 VEC 并持续了一段时间 TEC, 芯片认为出现了放电过流;当 VM 端电压高于 VSHORT 并持续了一段时间 TSHORT, 芯片认为出现了短路。上述 2 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,断开负载即可恢复正常状态。

4. 充电过流检测

正常工作状态下的电池,在充电过程中,如果 VM 端子电压低于充电过流检测电压(VcHA),并且这种状态持续的时间超过充电过流检测延迟时间(TcHA),则关闭充电控制用的 MOSFET,停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使 VM 端子电压高于充电过流检测电压(VcHA)时,充电过流状态被解除,恢复到正常工作状态。

5. 0V 充电功能

此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,充电控制用 MOSFET 的门极固定为 VDD 端子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导通(CO 端子打开),开始充电。这时,放电控制 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(Vop)时,IC 进入正常工作状态.

功能描述

FH8209 是一款高精度的锂电池保护电路。正常状态下,如果对电池进行充电,则 FH8209可能会进入过 电压充电保护状态;同时,满足一定条件后,又会恢复到正常状态。如果对电池放电,则可能会进入过电压放 电保护状态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。图 3 示出了其典型应用线 路图,图 4 是其状态转换图。下面就各状态进行详细描述。

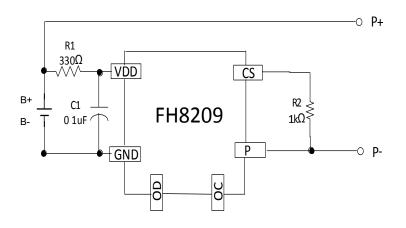


图3-1 FH8209典型应用电路1

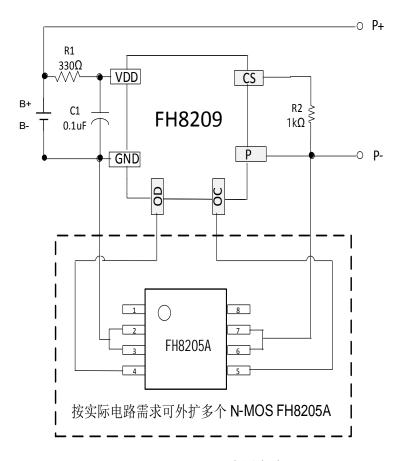


图3-2 FH8209典型应用电路2

器件标识	典型值	参数范围	单位	
R_1	330	100 ~ 500	Ω	
R ₂	1	0.5 ~ 1.3	kΩ	
C ₁	0.1	≥ 0.1	μF	

注意: R1, R2 不可省略

应用中的几个问题

外接 N-MOS 的选择

外接N-MOS如果是2个单N-MOS或外接多个双N-MOS,必须是同型号的MOS管,而且其栅极源极开启电压 VGS (th) 在0.4V 与过电压放电保护阈值 VOD 之间。如果 VGS (th) 小于 0.4V,则可能会导致过电压充电保护保护时,Q1不能有效的"关闭";如果 VGS (th) 大于 VOD,则可能会在未进入过电压放电保护状态下,Q2 提前"关闭"。

同时,Q1和Q2的栅极源极承受电压 VGS应大于使用充电器时 VDD端的电压,否则在对电池充电过程中,可能会导致Q1和Q2的损坏。

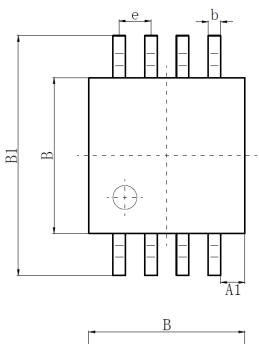
备注:以上说明中,Q1为外接OC控制端MOS,Q2为外接OD端控制MOS。

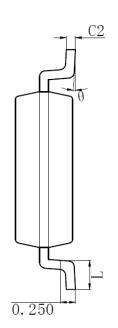
C1 的确定

C1与R1 构成滤波网络,对VCC 端电压进行去耦。C1可选择0.1μF 的陶瓷电容

R1 和 R2 的确定

R1 的推荐使用 330Ω 的电阻,R2 的推荐使用 $1k \Omega$ 的电阻,要求 R1 的阻值小于 R2。


因为各种检测阈值是对于 FH8209电路 VCC 端电压而言,而 VCC 端通过 R1 与电池连接,如果 R1 太大,将会导致各检测阈值与电池实际电压偏差增加;同时,如果充电器接反,可能会使 FH8209电路的 VCC 端与 GND 端电压超过极限值,导致电路损坏,因此 R1 不宜太大,应控制在 500 Ω 以内。


R2 不宜太小,当充电器接反或充电器充电电压太高时,它可以作为限流电阻来保护FH8209电路;同时 R2 亦不能太大,否则当充电器充电电压太高时,充电电流将不能被有效"切断",因此,R2 应控制在 $500~\Omega$ 至 1.3k Ω 之间。

PCB布线注意事项

- 1、C1对IC的VCC电压滤波,所以PCB布线时,C1 尽量靠近IC的VCC脚,以免降低其滤波效果。
- 2、充放电电流都经过P-和GND脚形成回路,在 对P-和GND布线时,尽量加大其铜皮宽度, 降低单位电流密度,能减少线路损耗及发热。
- 3、如果需要并联MOS管,需要注意并联MOS与内置MOS管P-和GND并联铜皮尽量宽度一致,避免两组MOS管因铜皮面积差异导致流经电流不均匀引起其中一组MOS发热偏高或易损坏。
- 4、如果线路并联了1个以上MOS管,测试保护板整体内阻严重偏高计算后的理论值,需检查PCB布线是否合理,主要确定上述注意事项第3条。

封装尺寸 CPC-8

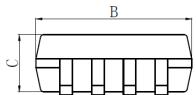


图 CPC-8 封装外形尺寸 表 5

SYMBOL	MIN(mm)	MAX(mm)	SYMBOL	MIN(mm)	MAX(mm)
А	2.50	2.70	С	0.85	1.05
A1	0.35	0.45	C1	0.00	0.15
е	0.53(BSC)		C2	0.15	0.18
В	2.50	2.70	L	0.40	0.60
B1	3.85	4.15	θ	0°	8°
b	0.16	0.26			