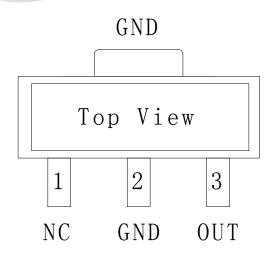

特性描述

TM1810-6是单通道LED发光二极管恒流驱动专用芯片,内部集成有LED高压驱动电路,通过外围OUT端口与LED发光二极管的连接来实现恒流照明控制,采用SOT-89的封装形式。本产品性能优良、连接简单、质量可靠。


功能特点

- ▶ 采用高压功率CMOS工艺
- ➤ 输出端口耐压24V
- > 无需任何外围器件
- ➤ 电流恒定60mA (±3%)
- ▶ 封装形式: SOT-89

内部结构框图

管脚排列

管脚功能

引脚名称	引脚序号	I/0	功能说明
NC	1		内部无连接
GND	2		接系统地
OUT	3	0	发光LED的控制输出,LED阴极连接该引脚

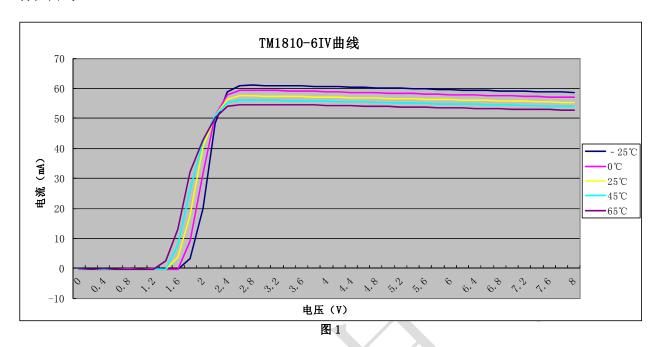
集成电路系静电敏感器件,干燥季节或干燥环境容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路静电防范措施。不当的操作和焊接,可能造成 ESD 损坏或者性能下降,从而导致芯片无法正常工作。

极限参数 (1) (2)

(Ta = 25℃, GND =	= 0 V)	TM1810-6	单 位	
参数名称	参数符号	极限值	1	
输出端口耐压	Vout	24	V	
功率损耗	PD	700	mW	
工作温度	Topt	-40 ∼ +80	$^{\circ}$	
储存温度	Tstg	−65 ~ +150	$^{\circ}$ C	

⁽¹⁾ 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。

推荐工作条件


在Ta = -20 ~ +70℃, GND = 0 V下测试,除非另有说明			TM1810-6			单位
参数名称	参数符号	测试条件	最小值	典型值	最大值	平位
逻辑电源电压	OUT	60mA	2. 8	3	24	V

注: TM1810-6为温度负反馈型器件, 当温度升高时, 可能产生最高6mA的电流值减小。

© Titan Micro Electronics www.titanmec.com

⁽²⁾ 所有电压值均相对于系统地测试。

特性曲线

应用信息

1、典型恒流驱动应用原理图如下:

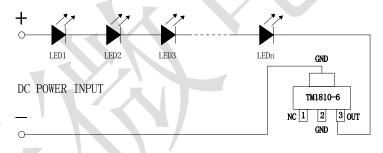


图 2

如图 2 所示,要使 TM1810-6 工作在恒流状态下,芯片 OUT 引脚上电压应大于 2.8V,即芯片的 2、3 脚之间的电压应达到 2.8V 以上。在应用时,电源串接 LED 灯后加在 OUT 引脚上的电压建议在 3.0V 以上。如果芯片持续工作在额定恒流状态下,TM1810-6 的 OUT 引脚电压最高不应超过 7V 为宜。

如果芯片 OUT 引脚长时间保持较高电压,则芯片自身功耗较大,可能会明显发热从而导致芯片损坏,应根据实际使用情况来合理配置器件参数。如果电源电压较高或串接的 LED 数量较少,导致 TM1810-6的 OUT 引脚工作电压偏高时,建议串接合适阻值及封装功率的电阻进行分压,如下图 3 所示:

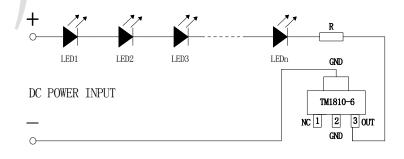


图 3

@ Titan Micro Electronics www.titanmec.com

单通道 LED 恒流驱动芯片 TM1810-6

图 3 中, 电阻 R 的阻值应根据电源电压、所使用的 LED 灯压降、串接的 LED 灯数量来进行计算,具体计算公式如下(设定 TM1810-6 的 OUT 引脚工作电压为 3. OV):

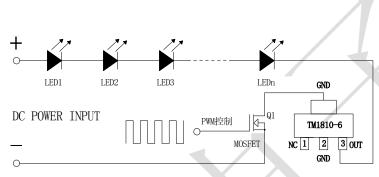
R=(电源电压-LED 灯压降 x 串接数量-3.0V)/0.060A

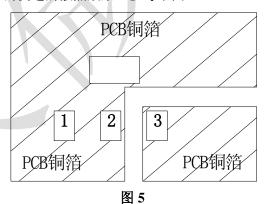
例如: 电源电压为 DC24V 时,使用 TM1810-6 作恒流驱动,5 颗白光 LED 灯珠串接时,R 的阻值计算如下:

R= $(24V-3.0V \times 5 \text{ m}-3.0V) / 0.060A=100Ω$

注: 红光 LED 灯压降一般以 2. 0V 计算, 绿光和蓝光 LED 灯的压降一般以 3. 0V 计算, 具体应根据实际使用的 LED 灯珠参数规格确定。

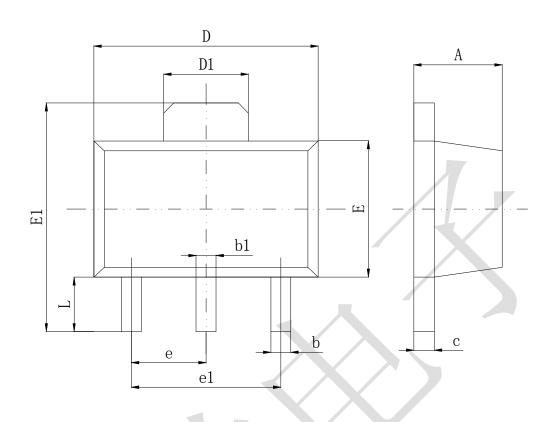
2、基于 PWM 调光的应用




图 4

如图 4 所示,用 PWM 信号通过开关电路控制 MOS 管 Q1 的导通和截止,使芯片工作在周期性通断状态。

如果电源电压减去串接的 LED 灯总压降后余下的电压较高,应按照图 3 所示在电路中串接分压电阻 R 进行电压及功率分担。


3、PCB设计注意事项

为了降低 TM1810-6 芯片工作时的温度,在进行 PCB 设计时,应将与 TM1810-6 引脚连接的 PCB 铜箔面积尽量扩大,以达到良好而快速的散热效果。参考下图 5:

注: 1号脚为 NC 脚, 无电气连接, 可与 2号脚 GND 通过覆铜连接, 增大散热面积。

@ Titan Micro Electronics www.titanmec.com

Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
Зушоот	Min	Max	Min	Max	
A	1. 400	1.600	0.055	0.063	
b	0. 320	0. 520	0.013	0.020	
b1	0. 400	0. 580	0.016	0.023	
c	0. 350	0. 440	0.014	0.017	
D	4. 400	4.600	0. 173	0. 181	
D1	1.550 REF.		0.061 REF.		
E	2. 300	2.600	0.091	0. 102	
E1	3. 940	4. 250	0. 155	0. 167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
L	0.900	1. 200	0. 035	0.047	

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

© Titan Micro Electronics www.titanmec.com