Features

Regulated Converter

- Wide input range 85-305VAC
- Operating temperature range: -40°C to +80°C
- High efficiency over entire load range
- No external components necessary
- Household certification IEC/EN60335
- Overvoltage category OVCIII (IEC62477-1)
- 140% Peak load capability

Description

The RAC10-K/277 series are highly efficient PCB-Mount power conversion modules with ultra-low energy losses even in light load conditions. Built for worldwide usage, the AC/DC units cover an enhanced mains input range of 85VAC up to 305VAC and come with international safety certifications for both industrial and household standards. These AC/DC modules offer fully protected single or dual outputs as well as EMC Class B compliance without the need of any external components. The 140% peak power capability makes the RAC10-K/277 series suitable for inductive, high start-up current or nonlinear loads. With a full load temperature range of -40°C to +65°C, they are ideal for always-on and standby mode operations in process automation, loT and smart building applications.

Selection Guide					
Part Number	Input Voltage Range [VAC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	Max. Capacitive Load [μF]]
RAC10-3.3SK/277	85-305	3.3	2500	79	10000
RAC10-05SK/277	85-305	5	2000	82	8000
RAC10-12SK/277	85-305	12	840	84	1500
RAC10-15SK/277	85-305	15	670	85	1000
RAC10-18SK/277	85-305	18	560	85	800
RAC10-24SK/277	85-305	24	420	84	330
RAC10-12DK/277	85-305	±12	±420	82	±1200
RAC10-15DK/277	85-305	±15	±340	83	±1000

Notes:

Note1: Efficiency is tested at 25°C with constant resistant mode at full load and 230VAC

Model Numbering

Ordering Examples:

10 Watt	5Vout	Single Output
10 Watt	24Vout	Single Output
10 Watt	12Vout	Dual Output
	10 Watt	10 Watt 24Vout

RAC10-K/277

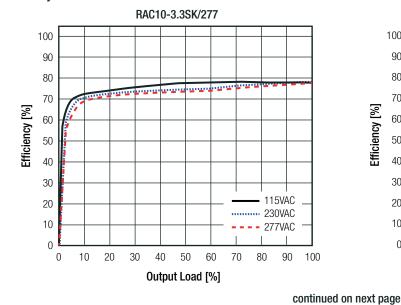
10 Watt 2" x 1" Single and Dual Output

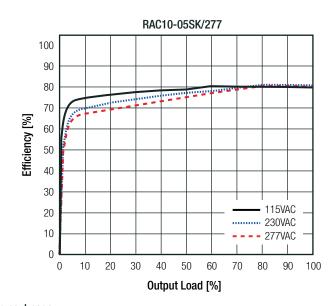
UL62368-1 certified CSA C22.2 No. 62368-1-14 certified IEC/EN60950-1 certified IEC/EN60335-1 certified IEC/EN62368-1 certified EN62233 certified EN62477-1 certified EN61204-3 compliant CB-Report

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

Parameter	Cond	Condition		Тур.	Max.
Internal Input Filter					Pi Type
Input Voltage Range (2,3)	nom. Vin-	nom. Vin= 277VAC		277VAC	305VAC 430VDC
	115VAC				250mA
Input Current		VAC			210mA
		VAC			190mA
		VAC			15A
Inrush Current		230VAC			30A
	277	VAC			36A
No load Power Consumption				150mW	250mW
ErP Standby Mode Conformity	Input Power=	0.5W			0.3W
(Output Load Capability)		1.0W			0.7W
		2.0W	47Hz		1.4W
Input Frequency Range					63Hz
Overload Capability		peak duty cycle: 10%; TAMB +50°C max.			140%/10s
Minimum Load		Single Dual		10%	
	115	115VAC			
Power Factor	230VAC		0.50		
	277	0.45			
Start-up Time				30ms	
Rise Time					25ms
	115VAC 230VAC			15ms	
Hold-up time				90ms	
	277		110ms		
Internal Operating Frequency					100kHz
Output Ripple and Noise (4)	20MHz BW	3.3Vout, 5Vout others		60mVp-p	1% of Vout

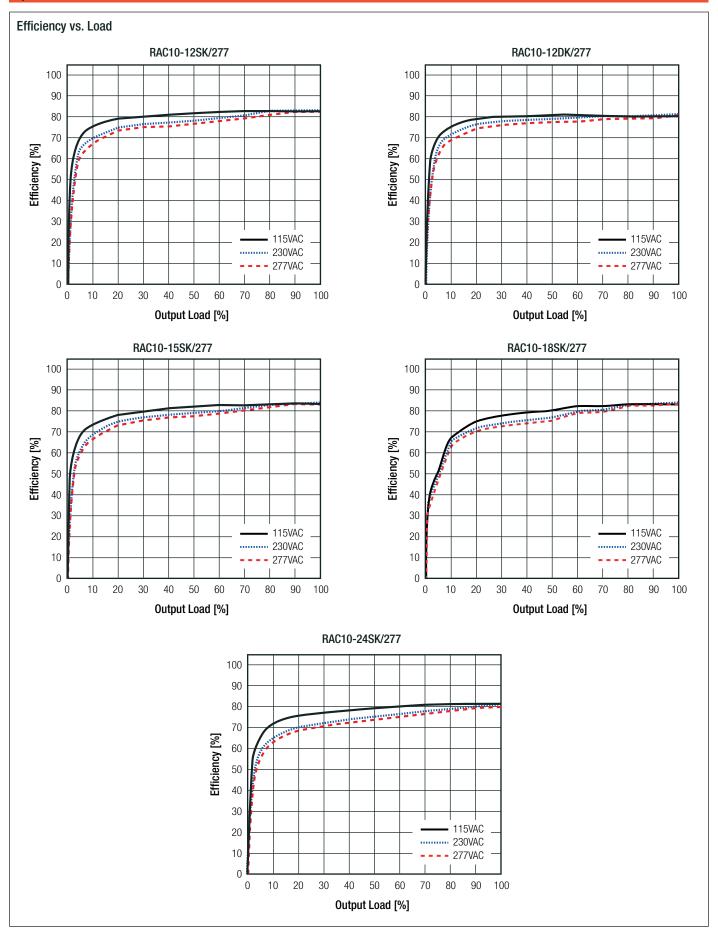

Notes:


Note2: The products were submitted for safety files at AC-Input operation

Note3: Refer to "Line Derating"

Note4: Measurements are made with a $0.1\mu F$ MLCC & $10\mu F$ E-cap in parallel across output. (low ESR)

Efficiency vs. Load



www.recom-power.com REV.: 8/2020 PA-2

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

Series

ecifications (measured @ Ta= 25°C, nominal	mpat voltago (110/2004/10),	Tun load and artor warm up			
GULATIONS					
ameter	Con	dition		V	
out Accuracy				±1.0% ty	
Regulation	low line t	to high line		±0.5%	
d Regulation	0-100% load	3.3, 5Vout others		1.5% 1.0%	
ss Regulation	dual ou	itput only		±10.0%	
		step change		4.0%	
sient Response	recove	ery time		5	
eviation vs Load RAC10-3.3SK/277					
2.0		2.0	RAC10-05SK/277		
1.5		1.5			
1.0		1.0			
₹ 0.5		<u> </u>			
		<u>8</u> 0.5			
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.5 0.5			
		á -0.5			
-1.0		-1.0			
-1.5		-1.5			
-2.0 0 10 20 30 40 50 60	70 80 90 100	-2.0			
Output Load [%]	10 00 00 100	0 10		90 100	
RAC10-12SK/277			Output Load [%] RAC10-15SK/277		
2.0		2.0	TIAGTO TOOK 211		
1.5		1.5			
1.0		1.0			
S 0.5		5 0.5			
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.5 Oeviation [%]			
-0.5		eviat			
-1.0					
		-1.0			
-1.5		-1.5			
-2.0 10 20 30 40 50 60	70 80 90 100	-2.0 L 10	20 30 40 50 60 70 80	90 100	
Output Load [%]			Output Load [%]		
RAC10-18SK/277		0.0	RAC10-24SK/277		
2.0		2.0			
		1.5	 	$\overline{}$	
1.5					
1.5		1.0		+	
1.0		1.0			
1.0		1.0			
1.0		1.0			
1.0 70 70 70 70 70 70 70		1.0 Deviation [%] 0.5 0.5 -0.5			
1.0		1.0			

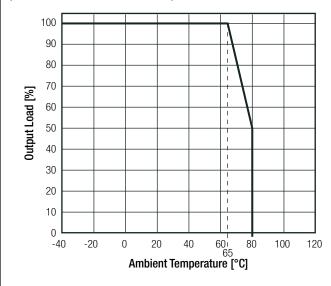
Output Load [%]

Output Load [%]

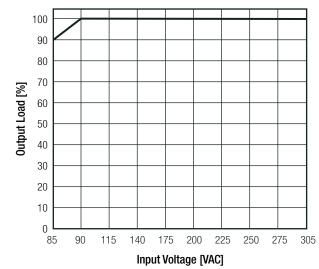
Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

PROTECTIONS					
Parameter	Ţ	уре	Value		
Input Fuse (5)			T2A, slow blow		
Short Circuit Protection (SCP)			Hiccup, automatic restart		
Over Voltage Protection (OVP)			150% - 195%, latch off mode		
Over Load Protection (OLP)			150% - 195%, hiccup mode		
Over Voltage Category (OVC)	according to	IEC/EN62477-1	OVC III		
Class of Equipment			Class II		
Isolation Voltage	tested fo	or 1 minute	4kVAC		
Isolation Resistance	I/P to O/P	Isolation Voltage 500VDC	1 G Ω min.		
Isolation Capacitance	1/7 10 0/7	100kHz/0.1V	100pF max.		
Insulation Grade			reinforced		
Leakage Current			0.25mA max.		


Notes:

Note5: Refer to local safety regulations if input over-current protection is also required


ENVIRONMENTAL				
Parameter	Condition			Value
Operating Temperature Penge	@ natural convection 0.1m/s		full load	-40°C to +65°C
Operating Temperature Range	W Hatural convection 0.111/5	refe	r to line derating	-40°C to +80°C
Maximum Case Temperature				+100°C
Temperature Coefficient				0.05%/K
Operating Altitude				3000m
Operating Humidity	non-conde	non-condensing		20% to 90% RH
Design Lifetime	115VAC/60Hz and ful	115VAC/60Hz and full load at +25°C		>194 x 10 ³ hours
MTBF	according to MIL-HDBK-217F,	G B	+25°C	>1750 x 10 ³ hours
	according to MIE-HDBR-2171, d.i	G.D.	+40°C	>1582 x 10 ³ hours
Pollution Degree				PD2
Vibration				10-500Hz, 2G 10min./1cycle, period 60min. each along x,y,z axes

Derating Graph

(@ Chamber and natural convection 0.1m/s)

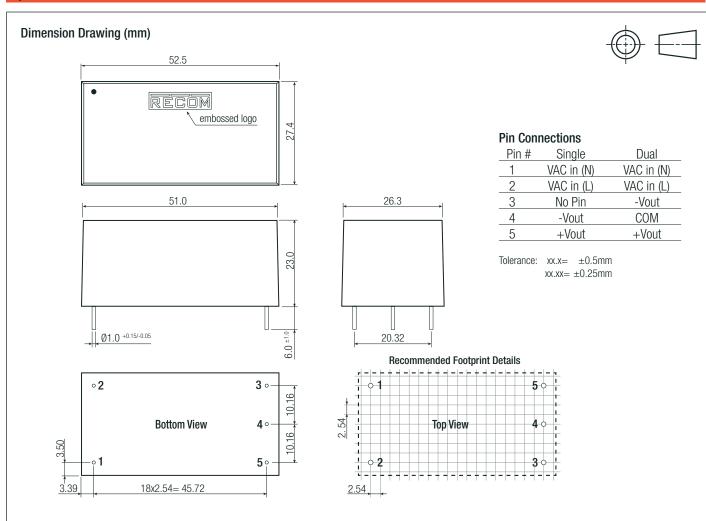
Line Derating (6)

Notes:

Note6: No derating required for the specified DC-input range

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)


Certificate Type (Safety)	Report / File Number	Standard
Audio/Video, information and communication technology equipment - Safety requirements	E224736	UL62368-1, 2nd Edition, 2014 CAN/CSA C22.2 No. 62368-1-14, 2nd Edition, 2014
Information Technology Equipment, General Requirements for Safety (CB Scheme)	F404400 A4 0D 4	IEC60950-1:2005, 2nd Edition + A2:2013
Information Technology Equipment, General Requirements for Safety (LVD)	E491408-A4-CB-1	EN60950-1:2006 + A2:2013
Household and similar electrical appliances - Safety - Part 1: General requirements	LCS170821028CS	IEC60335-1:2010 + A2:2016 + C1:2016, 5th Edition EN60335-1:2012 + A11:2014
Audio/Video, information and communication technology equipment - Safety requirements (CB Scheme)	1000010045 11	IEC62368-1:2014, 2nd Edition
Audio/Video, information and communication technology equipment - Safety requirements (LVD)	16BCS10045 11	EN62368-1:2014 + A11:2017
Measurement methods for electromagnetic fields of household appliances and similar apparatus with regard to human exposure	LCS170821028CS	EN62233:2008
Safety requirements for power electronic converter systems and equipment - Part 1: General	LCS181212006CS	IEC62477-1:2012 + A1:2016, 1st Edition EN62477-1: 2012 + A1:2017
EAC Safety of Low Voltage Equipment	RU-AT.03.67361	TP TC 004/020, 2011
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance (7)	Conditions	Standard / Criterion
Low-voltage power supplies DC output - Part 3: Electromagnetic compatibility	Oonunions	EN61204-3:2000, Class B
	L 00170001000AE	ENGILEGY GIAGO D
Information technology equipment - Radio disturbance characteristics -	LCS170821088AE	AS/NZS CSPR 22:2009 + A1:2010, Class B
Limits and methods of measurement		
- · · ·	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz	AS/NZS CSPR 22:2009 + A1:2010, Class B EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A
Limits and methods of measurement ESD Electrostatic discharge immunity test	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz	EN61000-4-2: 2009, Criteria B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity Surge Immunity	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV DC Out Port: ±0.5kV	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B EN61000-4-5:2014, Criteri B
Limits and methods of measurement ESD Electrostatic discharge immunity test Radiated, radio-frequency, electromagnetic field immunity test Fast Transient and Burst Immunity Surge Immunity Immunity to conducted disturbances, induced by radio-frequency fields	±8kV Air; ±4kV Contact 10V/m, 80MHz-1GHz 3V/m, 1.5GHz-2GHz 1V/m, 2GHz-2.7GHz AC In Port: ±2.0kV DC Out Port: ±2.0kV AC In Port: ±1.0kV L-PE, N-PE ±2.0kV DC Out Port: ±0.5kV 10Vrms	EN61000-4-2: 2009, Criteria B EN61000-4-3: 2006 + A2, 2010, Criteria A EN61000-4-4:2012, Criteria B EN61000-4-5:2014, Criteri B

Parameter	Туре	Value
	case	black plastic (UL94V-0)
Matarial	potting	silicone (UL94V-0)
Material	PCB	FR4 (UL94V-0)
	baseplate	plastic (UL94V-0)
Dimension (LxWxH)		52.5 x 27.4 x 23.0mm
Weight		65g typ.

Series

Specifications (measured @ Ta= 25°C, nominal input voltage (115/230VAC), full load and after warm-up)

PACKAGING INFORMATION					
Parameter	Туре	Value			
Packaging Dimension (LxWxH)	tube	490.0 x 56.0 x 40.0mm			
Packaging Quantity		15pcs			
Storage Temperature Range		-40°C to +85°C			
Storage Humidtiy	non-condensing	20% to 90% RH			

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.