

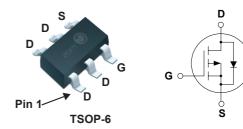
P-Channel Silicon MOSFET

General Description

The IRF5803B uses advanced trench technology and design to provide excellent RDS(ON). This device is ideal for battery and load management applications.

Features

- P-Channel
- Low ON-resistance
- Surface Mount
- RoHS Compliant


Product Summary

BVDSS	RDSON	ID
-60V	98mΩ	-4.0A

Applications

- Inverters
- Power Supplies
- DC / DC converter

TSOP-6 Pin Configuration

Type	Package	Marking
IRF5803B	TSOP-6	3GNRB

Absolute Maximum Ratings

Symbol	Parameter Rating		Units	
V_{DS}	Drain-Source Voltage	-60	V	
V_{GS}	Gate-Source Voltage ±20			
I _D @T _A =25℃	Continuous Drain Current -4		Α	
I _{DM}	Pulsed Drain Current	-16	Α	
P _D @T _A =25℃	Total Power Dissipation ¹	2	W	
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$	
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$ C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient ¹		62.5	°C/W

P-Channel Silicon MOSFET

Electrical Characteristics (T_J =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60			V
D	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-3.5A			98	mΩ
R _{DS(ON)}		V_{GS} =-4.5V, I_{D} =-2.5A			110	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=-250uA$	-1		-3	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V			-1	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-2A		3		S
Qg	Total Gate Charge	I _D =-3A		15		
Q _{gs}	Gate-Source Charge	V _{DS} =-24V		2.5		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =-10V		3.2		
T _{d(on)}	Turn-On Delay Time	V _{DD} =-24V		11		
T _r	Rise Time	I _D =-1.5A		13		
T _{d(off)}	Turn-Off Delay Time	R _L =16Ω		55		ns
T _f	Fall Time	V _{GS} =-10V		28		
C _{iss}	Input Capacitance			1600		
Coss	Output Capacitance	V _{DS} =-20V, V _{GS} =0V , f=1MHz		75		pF
C _{rss}	Reverse Transfer Capacitance			50		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
trr	Reverse Recovery Time	I _F =-2A		25		ns
Qrr	Reverse Recovery Charge	dl/dt=-100A/µs		34		nC
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-2A			-1.2	V

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability without notice.

^{1.}Surface mounted on 1 in square Cu board