

200V N-Channel MOSFET

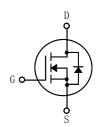
General Description

The MOSFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design, provides the designer with anextremely efficient and reliable device for use in a wide variety of applications.

Features

- Fast Switching
- 100% avalanche tested
- Simple Drive Requirements
- RoHS Compliant

Product Summary


BVDSS	RDSON	ID
200V	0.3Ω	9A

Applications

- PWM Motor Controls
- LED TV
- DC-DC Converters

TO-220 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	200	V	
V_{GS}	Gate-Soruce Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	9	А	
I _D @T _C =100℃	Continuous Drain Current	6.5	А	
I _{DM}	Pulsed Drain Current	27	Α	
EAS	Single Pulse Avalanche Energy ¹	100	mJ	
I _{AR}	Avalanche Current	9	А	
P _D @T _C =25℃	Total Power Dissipation	50	W	
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$	
T _J	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient		62	°C/W
R _{0JC}	Thermal Resistance Junction -Case		1.83	°C/W

200V N-Channel MOSFET

Electrical Characteristics (T_J =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V , I_D =4.5A			0.3	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	1		3	V
1	Drain-Source Leakage Current	V _{DS} =200V, V _{GS} =0V			25	uA
I _{DSS}		V_{DS} =160V , V_{GS} =0V , T_J =150 $^{\circ}{ m C}$			250	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V, I _D =5A		15		S
Qg	Total Gate Charge	V _{DS} =160V, V _{GS} =10V, I _D =5.4A		24		nC
Q _{gs}	Gate-Source Charge			4		
Q_{gd}	Gate-Drain Charge			12		
T _{d(on)}	Turn-On Delay Time			9		
Tr	Rise Time	V_{DD} =100V, R_{D} =18 Ω , R_{G} =13 Ω		18		
T _{d(off)}	Turn-Off Delay Time	I _D =5.4A		35		ns
T _f	Fall Time			20		
C _{iss}	Input Capacitance			800		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		200		pF
C _{rss}	Reverse Transfer Capacitance			70		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			9	Α
I _{SM}	Pulsed Source Current				27	Α
V_{SD}	Diode Forward Voltage	V_{GS} =0 V , I_{S} =5.4 A , T_{J} =25 $^{\circ}{\mathbb{C}}$			1.3	V

Note:

1.Starting T_J = 25 $^{\circ}$ C, L = 0.5mH, V_G = 10V, I_{AS} = 20A.

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.