onsemi

Single Channel, AC/DC Sensing Input, Phototransistor Optocoupler In Half-Pitch Mini-Flat 4-Pin Package

FODM214, FODM217 Series

The FODM217 series consist of a gallium arsenide infrared emitting diode driving a phototransistor. The FODM214 series consist of two gallium arsenide infrared emitting diodes connected in inverse parallel for AC operation. Both were built in a compact, half–pitch, mini–flat, 4–pin package. The lead pitch is 1.27 mm.

Features

- Current Transfer Ratio Ranges from 20 to 600%
 - at $I_F = \pm 1$ mA, $V_{CE} = 5$ V, $T_A = 25^{\circ}C$
 - ♦ FODM214 20 to 400%
 - ◆ FODM214A 50 to 250%
 - at $I_F = 5 \text{ mA}$, $V_{CE} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
 - FODM217A 80 to 160%
 - ◆ FODM217B 130 to 260%
 - ◆ FODM217C 200 to 400%
 - ◆ FODM217D 300 to 600%
- Safety and Regulatory Approvals:
 - UL1577, 3750 VAC_{RMS} for 1 min
 - DIN EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- Applicable to Infrared Ray Reflow, 260°C

Typical Applications

- Primarily Suited for DC-DC Converters
- For Ground Loop Isolation, Signal to Noise Isolation
- Communications Adapters, Chargers
- Consumer Appliances, Set Top Boxes
- Industrial Power Supplies, Motor Control, Programmable Logic Control

MFP4 2.5x4.4, 1.27P CASE 100AL

MARKING DIAGRAM

1.	ON	= Corporate Logo
2.	21xx	= Device Number
3.	V	= DIN EN/IEC60747-5-5 Option
4.	Х	= One-Digit Year Code
5.	YY	= Digit Work Week

R1 = Assembly Package Code

6.

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

DATA SHEET www.onsemi.com

1

SAFETY AND INSULATIONS RATING

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE 0110/1.89 Table 1,	< 150 V _{RMS}	I–IV
For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification	55/110/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} x 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10 s$, Partial Discharge < 5 pC	904	Vpeak
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 s$, Partial Discharge < 5 pC	1060	Vpeak
VIORM	Maximum Working Insulation Voltage	565	Vpeak
V _{IOTM}	Highest Allowable Over-Voltage	4,000	Vpeak
	External Creepage	≥5	mm
	External Clearance	≥ 5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τ _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V (Note 1)	> 10 ⁹	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS (T_A = 25° C unless otherwise specified.)

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	–55 to +150	°C
T _{OPR}	Operating Temperature	–55 to +110	°C
TJ	Junction Temperature	-55 to +125	°C
T _{SOL}	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 sec	°C

EMITTER

	50	mA
vard Current (1 μs pulse, 300 pps)	1	А
nput Voltage	6	V
ssipation (Note 2)	70	mW
	ward Current (1 μs pulse, 300 pps) nput Voltage ssipation (Note 2)	nput Voltage 6

I _{C(average)}	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	80	V
V _{ECO}	Emitter-Collector Voltage	7	V
PD _C	Collector Power Dissipation (Note 2)	150	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter	Device	Conditions	Min.	Тур.	Max.	Units
EMITTER	EMITTER						
V _F	Forward Voltage	FODM214	I _F = ±20 mA		1.0		V
		FODM217	I _F = 20 mA		1.2	1.4	
I _R	Reverse Current	FODM217	$V_R = 4 V$			10	μA
C _T	Terminal Capacitance	All	V = 0 V, f = 1 kHz		30	250	pF
DETECTOR							
BV _{CEO}	Collector-Emitter Breakdown Voltage	All	I _C = 0.1 mA, IF = 0 mA	80			V
BV _{ECO}	Emitter-Collector Breakdown Voltage	All	I _E = 10 μA, IF = 0 mA	7			V
I _{CEO}	Collector Dark Current	All	V_{CE} = 50 V, IF = 0 mA			100	nA

TRANSFER CHARACTERISTICS $T_A {=} 25^\circ C$ unless otherwise specified

Symbol	Parameter	Device	Conditions	Min.	Тур.	Max.	Units
CTR _{CE}	Current Transfer Ratio (collector-emitter)	FODM214	I _F = ±1 mA, V _{CE} = 5 V	20		400	%
		FODM214A	1	50		250	
		FODM217A	I _F = 5 mA, V _{CE} = 5 V	80		160	
		FODM217B		130		260	
		FODM217C		200		400	
		FODM217D		300		600	
Ι _C	Collector Current	FODM214	$I_F = \pm 1 \text{ mA}, V_{CE} = 5 \text{ V}$	0.2		2.5	mA
		FODM217	I _F = 5 mA, V _{CE} = 5 V	4		30	
CTR _(SAT)	Saturated Current Transfer Ratio	FODM214	$I_F = \pm 8$ mA, $V_{CE} = 0.4$ V		60		%
		FODM217	I _F = 8 mA, V _{CE} = 0.4 V		60		
I _{C(SAT)}	Collector Current	FODM214	$I_F = \pm 8$ mA, $V_{CE} = 0.4$ V		4.0		mA
		FODM217	I _F = 8 mA, V _{CE} = 0.4 V	4.8			
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	FODM214	$I_F = \pm 8$ mA, $I_C = 2.4$ mA			0.4	V
		FODM217	I _F = 8 mA, I _C = 2.4 mA			0.4	

SWITCHING CHARACTERISTICS T_A = $25^{\circ}\mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{ON}	Turn On Time	I_{C} = 2 mA, V_{CE} = 10 V, R_{L} = 100 Ω		3		μs
t _{OFF}	Turn Off Time	I_{C} = 2 mA, V_{CE} = 10 V, R_{L} = 100 Ω		3		μs
t _R	Output Rise Time (10%–90%)	I_{C} = 2 mA, V_{CE} = 10 V, R_{L} = 100 Ω		3		μs
t _F	Output Fall Time (90%-10%)	IC = 2 mA, V_{CE} = 10 V, R_L = 100 Ω		3		μs

ISOLATION CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	$\label{eq:Freq} \begin{array}{l} \mbox{Freq} = 60 \mbox{ Hz}, t = 1.0 \mbox{ min}, \\ I_{I-O} \leq \ 10 \ \mu A \mbox{ (Note 3, 4)} \end{array}$	3,750			VAC _{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V (Note 3)	5 x 10 ¹⁰			Ω
C _{ISO}	Isolation Capacitance	Frequency = 1 MHz		0.6	1.0	pF

Device is considered a two terminal device: Pin 1 and 2 are shorted together and Pins 3 and 4 are shorted together.
3,750 VAC_{RMS} for 1 minute duration is equivalent to 4,500 VAC_{RMS} for 1 second duration.

TYPICAL CHARACTERISTICS

Figure 1. Collector Power Dissipation vs. Ambient Temperature

Figure 3. Forward Current vs. Forward Voltage

Figure 5. Collector Emitter Voltage vs. Forward Current

Figure 2. LED Power Dissipation vs. Ambient Temperature

Figure 4. Forward Voltage Temperature Coefficient vs. Forward Current

V_{CE}, COLLECTOR-EMITTER CURRENT (V)

Figure 6. Collector Current vs. Collector-Emitter Voltage

Figure 13. Switching Time vs. Load Resistance

Figure 14. Switching Time vs. Ambient Temperature

TEST CIRCUIT

Figure 15. Test Circuit for Switching Time

REFLOW PROFILE

Figure 16. Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60–150 seconds
Peak Body Package Temperature	260°C +0°C / –5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

ORDERING INFORMATION (Note 5)

Part Number	Package	Packing Method
FODM214A	SOP 4-Pin	Tube (100 units)
FODM214AR2	SOP 4-Pin	Tape and Reel (3000 units)
FODM214AV	SOP 4-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 units)
FODM214AR2V	SOP 4-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (3000 units)

5. The product orderable part number system listed in this table also applies to the FODM214, FODM217A, FODM217B, FODM217C, and FODM217D products.

PACKAGE DIMENSIONS

MFP4 2.5x4.4, 1.27P CASE 100AL ISSUE O

- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative