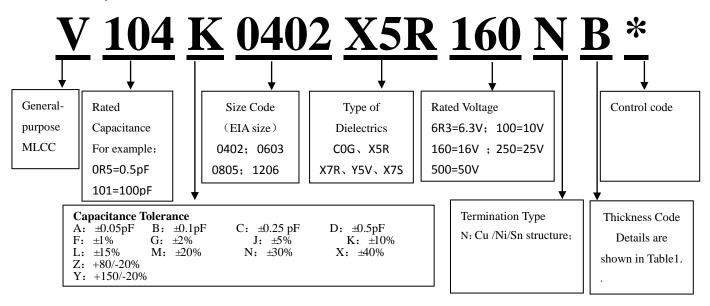
| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  |                   | Page | number  | 1 / 14        |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------------|------|---------|---------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       |  | File t            | ype  | Product | Specification |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal publicuments | С    | Date    | 2020-11-03    |

| 1. Purpose | versus | Application | characterist | ics: |
|------------|--------|-------------|--------------|------|
|------------|--------|-------------|--------------|------|

The specifications are applicable to Multi-layer Ceramic Chip Capacitor (MLCC): ■ Universal; □ Automotive Grade; 2. The term / Definition:: 2.1 Structural design classification: ■General; □ Ultra Micro; □ High Capacitance; □ High-Q; ☐ High-voltage 2.2 Chip Size: □01005、□0201、■0402、■0603、■0805、■1206、\_\_\_(Others); 2.3 Capacitance range: 0.1pF~1µF; 2.4 Voltage range: 6.3V~50V;

2.5 Type of Dielectrics:  $\blacksquare COG$ ,  $\blacksquare X7R$ ,  $\blacksquare X5R$ ,  $\blacksquare Y5V$ ,  $\blacksquare X7S$ , \_\_\_\_(Others);

ADD: Viiyong Hi-Tech Park, No.1 Chuangye 2nd Road, Shuangdong Sub-district, 527200, Luoding City, Guangdong


Province, P. R. China

Postcode: 527200 TEL: 0766-3810639 FAX: 0766-3810639

Mark: The product specification is only for reference of design selection, not used as the basis for delivery

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  |                   | Page | number  | 2 / 14        |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------------|------|---------|---------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       |  | File t            | ype  | Product | Specification |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal publicuments | С    | Date    | 2020-11-03    |

### 3. Part Number System:



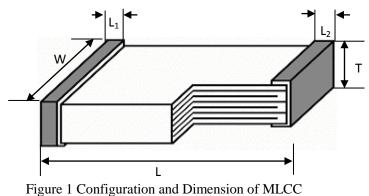



Table 1 Dimension of MLCC (Unite: mm)

| Size  | Length (L)                             | Width (W)              | Width of Termination | Thickness                   | Thickness |
|-------|----------------------------------------|------------------------|----------------------|-----------------------------|-----------|
| Size  | Lengui (L)                             | Width (W)              | (L1, L2)             | (T)                         | code      |
| 0.402 | 1.00±0.05                              | 0.50±0.05              | 0.10~0.35            | 0.50±0.05                   | В         |
| 0402  | 1.00 <sup>+0.15</sup> <sub>-0.05</sub> | $0.50^{+0.13}_{-0.05}$ | 0.10~0.35            | $0.50^{+0.13}_{-0.05}$      | N         |
| 0603  | 1.60±0.10                              | 0.80±0.10              | 0.15~0.60            | 0.80±0.10                   | D         |
| 0005  | 2.00±0.20                              | 1.25 ±0.20             | 0.20~0.75            | $0.85^{+0.15}_{-0.35}$      | Y         |
| 0805  | 2.00 <sup>+0.20</sup> -0.30            | $1.25^{+0.20}_{-0.30}$ | 0.20~0.75            | 1.25 <sup>+0.20</sup> -0.30 | Н         |
|       | 3.20±0.20                              | 1.60±0.20              | 0.25~0.75            | $0.85^{+0.15}_{-0.35}$      | Y         |
| 1206  | 3.20±0.20                              | 1.60±0.20              | 0.25~0.75            | 1.15±0.20                   | О         |
|       | 3.20±0.20                              | 1.60±0.20              | 0.25~0.75            | 1.60±0.20                   | L         |

| VIIYONE GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  |                   | Page | number  | 3 / 14        |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------------|------|---------|---------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       |  | File t            | ype  | Product | Specification |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal publicuments | С    | Date    | 2020-11-03    |

## Table 2 Type of dielectrics

| Type of Dielectrics | Operating Temperature Range | Temperature Coefficient or Characteristic |
|---------------------|-----------------------------|-------------------------------------------|
| NP0                 | -55℃~+125℃                  | C0G: 0±30ppm/°C                           |
| NFU                 | -33 C + 123 C               | C0H: 0±60ppm/°C                           |
| X7R                 | -55°C ∼+125°C               | ±15%                                      |
| X5R                 | -55℃~+85℃                   | ±15%                                      |
| Y5V                 | -30℃~+85℃                   | +22/-82%                                  |
| X7S                 | -55°C ∼+125°C               | ±22%                                      |

# Table 3 Rated Voltage and Rated Capacitance

| <b>a</b> : | Rate voltage    |                                        |             | Capacitance | •                                |             | Thickness |
|------------|-----------------|----------------------------------------|-------------|-------------|----------------------------------|-------------|-----------|
| Size       | /U <sub>R</sub> | C0G                                    | X7R         | X5R         | Y5V                              | X7S         | code      |
|            |                 | 0.1pF~1.0nF                            | 100pF∼68nF  | 100pF∼100nF | 100pF∼68nF                       | _           | В         |
|            | 50V             | 360pF∼1.0nF                            | 22nF∼68nF   | 22nF~100nF  | 22nF∼68nF                        | _           | N         |
|            |                 | _                                      | 100nF       | _           | _                                | _           | С         |
|            | 35V             | _                                      | 100nF       | 100nF       | <del>-</del>                     | _           | В         |
|            | 25V             | $0.1 \mathrm{pF}{\sim}1.0 \mathrm{nF}$ | 22nF~100nF  | 10nF∼220nF  | $10 \text{nF} \sim 68 \text{nF}$ | _           | В         |
| 0402       | 23 V            | 470pF~1.0nF                            | 100nF       | 82nF∼220nF  | 100nF                            | _           | N         |
|            | 16V             | _                                      | 56nF∼100nF  | 47nF∼470nF  | 47nF∼150nF                       | _           | В         |
|            | 10 V            | _                                      | _           | 120nF∼470nF | 150nF~220nF                      | _           | N         |
|            | 10V             |                                        |             | 100nF∼470nF | 100nF                            | 120nF∼220nF | В         |
|            | 100             | _                                      | _           | 100nF∼470nF | 150nF~220nF                      | 120nF∼470nF | N         |
|            | 6.3V            | _                                      | _           | 100nF∼470nF | _                                | 120nF∼470nF | В         |
|            | 6.3V            | _                                      | _           | 100nF∼470nF | 220nF                            | _           | N         |
|            | 50V             | 1pF∼2.2nF                              | 220pF~100nF | 220pF~100nF | 220pF~220nF                      | _           | D         |
| 0603       | 25V             | 2.7nF∼3.9nF                            | 100nF∼390nF | 100nF∼220nF | 100nF∼220nF                      | _           | D         |
|            | 16V             | _                                      | 100nF∼390nF | 220nF~470nF | 220nF~470nF                      | —           | D         |
|            | 50V             | 10pF∼4.7nF                             | 220pF~100nF | 220pF~100nF | 220pF~100nF                      | —           | Y         |
|            | 300             | 1.0nF∼5.6nF                            | 100nF∼820nF | 100nF∼820nF | 100nF∼680nF                      | _           | Н         |
| 0805       | 25V             | 1.0nF∼10nF                             | —           | —           |                                  | —           | Y         |
|            | 23 V            | _                                      | 220nF~820nF | 220nF~820nF | 220nF~680nF                      | _           | Н         |
|            | 16V             | _                                      | 1.0μF       | 1.0µF       | 1.0µF                            | _           | Н         |
|            | 50V             | _                                      | 100nF       | _           | 100nF                            | _           | Y         |
| 1206       | 30 V            | _                                      | 100nF~1.0μF | _           | 100nF~1.0μF                      | _           | L         |
| 1200       | 25V             |                                        |             |             | <u> </u>                         |             |           |
|            | 16V             |                                        | 1.0μF       |             | 1.0µF                            | _           | О         |

Note: 1) E12 series for X7R, X5R and X7S groups, E6 series for Y5V group, E24 series for C0G group, integer nominal values such as 1.0, 2.0, 3.0pF, etc. are allowed for the specifications below 10pF.

<sup>2)</sup> For products of the same size, material and capacity, the rated voltage can be covered from high to low.

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  |             | Page | number  | 4 / 14        |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------|------|---------|---------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       |  | File ty     | ype  | Product | Specification |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal public | С    | Date    | 2020-11-03    |

### Type of Packing:

Reel Packaging (standard carrier tape disc packaging), every disc smallest package are shown in Table 4.

Table 4 Packing type

| Chip Size         | (     | 0402  | 0603  | 08      | 305   | 12      | 206   |
|-------------------|-------|-------|-------|---------|-------|---------|-------|
| Thickness code    | B/N   | B/N   | D     | Н       | Y     | L/O     | Y     |
| Disc size         | 7"    | 13"   | 7"    | 7"      | 7"    | 7"      | 7"    |
| Carrier Tape type | Paper | Paper | Paper | Plastic | Paper | Plastic | Paper |
| QTY (Kpcs)        | 10    | 50    | 4     | 2       | 4     | 2       | 4     |

First packaging: Each multi-disc material is packed into a box.

The second packaging: the first packaged packaging box is loaded into the paper packaging box, and the remaining space in the box is filled with light auxiliary materials. The above packaging forms can also be packaged according to user needs.

- 4. Specifications and Test Methods:
- 4.1 Visual Inspection:
- 4.1.1 Requirement: no obvious defects on ceramic body and termination.
- 4.1.2 Test Method: Microscope 10×.
- 4.2 Size:
- 4.2.1 Requirement: Configuration and dimension of MLCC are shown in Figure 1 and Table 1.
- 4.2.2 Test Method: Measuring by gages which precision is not less than 0.01 mm.

### 4.3 Operating Environment:

| C0G/C0H(NP0), X7R | Temperature: -55°C $\sim$ +125°C; Relative humidity: $\leq$ 95%(25°C)                                             | Atmosphere: 86kPa ~106KPa |
|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|
| X5R               | Temperature: $-55^{\circ}\text{C} \sim +85^{\circ}\text{C}$ ; Relative humidity: $\leq 95\% (25^{\circ}\text{C})$ | Atmosphere: 86kPa ∼106KPa |
| Y5V               | Temperature: $-30^{\circ}\text{C} \sim +85^{\circ}\text{C}$ ; Relative humidity: $\leq 95\% (25^{\circ}\text{C})$ | Atmosphere: 86kPa ∼106KPa |
| X7S               | Temperature: -30°C ~+125°C; Relative humidity: ≤95% (25°C)                                                        | Atmosphere: 86kPa ~106KPa |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  |                   | Page | number  | 5 / 14        |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------------|------|---------|---------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       |  | File t            | ype  | Product | Specification |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal publicuments | С    | Date    | 2020-11-03    |

### 4.4 Electrical Parameters and Test Methods:

Table 5 Specifications and Test Methods of MLCC Electrical Parameter

| No. | Item                               | Sŗ                                                                                                                                                                                                                     | pecification                                          | Test Method                                                                                                                    |  |
|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | Capacitance (C)                    | Within the                                                                                                                                                                                                             | specified tolerance                                   |                                                                                                                                |  |
| 2   | Tangent of<br>Loss Angle/<br>(tgδ) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                 | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ |                                                                                                                                |  |
| 3   | Insulation<br>Resistances/<br>(Ri) | C0G/C0H(NP0): $C \le 10nF$ , $Ri \ge 10000MΩ$<br>$C > 10nF$ , $Ri \times C \ge 500s$<br>X7R、 X5R、 X7S: Y5V: $C \le 25nF$ , $Ri \ge 4000MΩ$ $C \ge 25nF$ , $Ri \times C \ge 100s$ $C \ge 25nF$ , $Ri \times C \ge 100s$ |                                                       | Temperature: 18~28°C; Humidity: ≤RH 80%; Apply rated voltage within 60 ±5S                                                     |  |
| 4   | Withstanding voltage (WV)          | No breakdown                                                                                                                                                                                                           | or flashover during test                              | C0G/C0H(NP0): 3×U <sub>R</sub> X7R \ X5R \ Y5V \ X7S: 2.5×U <sub>R</sub> t=1 minute Charge/discharge current not exceeds 50mA. |  |

Note: Capacitance test instructions of Class 2 ceramic capacitors

When the capacitor initial capacitance is lower than its tolerance value, the test sample need to be heated for  $60 \pm 5$  minutes at 150 °C  $\pm 10$  °C. Recover it, let sit at room temperature for  $24 \pm 2$  hrs, and then test the capacitance.

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |        | Page              | number  | 6 / 14        |            |
|-----------------------------------------------------------|----------------|-----------------------|--------|-------------------|---------|---------------|------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       | File t | ype               | Product | Specification |            |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |        | rnal publicuments | С       | Date          | 2020-11-03 |

# 4.5 Environment Test Specifications and Methods:

Without specific note, the "test method" in Table 6 is based on GB/T 21041/21042 IDT IEC60384-21/22 Table 6 Environment Test Specifications and Methods

| No. | Item                             | Specification                                                                                                                                                                                                                                                                                                                                                                            | Test Method                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Temperature                      | NP0(C0G/C0H):<br>$\alpha_c \le \pm 30 \text{ppm/}^{\circ} \text{C } (125^{\circ} \text{C});$<br>$-72 \le \alpha_c \le \pm 30 \text{ppm/}^{\circ} \text{C } (-55^{\circ} \text{C});$                                                                                                                                                                                                      | Preliminary Drying for 16~24hrs C0G/C0H(NP0),Special preconditioning for 1hr at 150°C followed by 24hrs (X7R、X5R、Y5V),The ranges of capacitance change compared with the                                                                                                                                                                                                                                  |
| 1   | Coefficient of Capacitance       | $X7R,X5R: \Delta C/C \le \pm 15\%$                                                                                                                                                                                                                                                                                                                                                       | temperature ranges $(\theta 1, 25^{\circ}\text{C}, \theta 2)$ shall be within the specified ranges.<br>X5R: $\theta 1=-55^{\circ}\text{C}$ , $\theta 2=85^{\circ}\text{C}$                                                                                                                                                                                                                                |
| 1   | (α <sub>c</sub> ) or Temperature | X7S: ΔC/C ≤±22%                                                                                                                                                                                                                                                                                                                                                                          | X7R \ X7S: $\theta 1 = -33^{\circ}$ C, $\theta 2 = 83^{\circ}$ C<br>X7R \ X7S: $\theta 1 = -55^{\circ}$ C, $\theta 2 = 125^{\circ}$ C<br>Y5V: $\theta 1 = -30^{\circ}$ C, $\theta 2 = 85^{\circ}$ C                                                                                                                                                                                                       |
|     | Characteristics                  | Y5V: -82%≤∆C/C≤+22%                                                                                                                                                                                                                                                                                                                                                                      | Test voltage:<br>0402 X7R 27nF≤C≤100nF: 0.5±0.1Vrms<br>X7S: 0.5±0.2Vrms<br>others: 1.0±0.2Vrms                                                                                                                                                                                                                                                                                                            |
| 2   | Resistance to Soldering Heat     | Visual: No visible damage and terminations uncovered shall be less than 25%.   Capacitance Change: $NP0(C0G/C0H): \ \Delta C/C \leq \pm 2.5\% \text{ or } \pm 0.25 \text{pF}, $ whichever is larger; $X7R, X5R: \Delta C/C \leq \pm 7.5\%; $ $X7S: \ \Delta C/C \leq \pm 15\% $ $Y5V: \ \Delta C/C \leq \pm 20\% $ $tg\delta \text{ and Ri: meet the initial specification in Table 5.}$ | Special preconditioning for 1hr at 150 °C followed by 24±1hrs;Preheat the capacitor at 110 to 150 °C for 30-60s. Immerse the capacitor in an eutectic solder solution at 260±5 °C for 10±1 seconds. The depth of immersion is 10mm.Recover it, let sit at room temperature for 6~24hrs [C0G/C0H(NP0)] or 24±2hrs (X7R \ X5R \ Y5V \ X7S), then observe appearance and measure electrical characteristics. |
| 3   | Solderability                    | 75% min. coverage of both terminal electrodes is soldered evenly and continuously.                                                                                                                                                                                                                                                                                                       | Immerse the test capacitor into a methanol solution containing rosin for 3 to 5 seconds, preheat it at 80 to $180^{\circ}$ C for 30s to 60s and immerse it into molten solder of $235\pm5^{\circ}$ C for $2\pm0.2$ seconds. The depth of immersion is 10mm.                                                                                                                                               |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |         | Page                   | number  | 7 / 14        |            |
|-----------------------------------------------------------|----------------|-----------------------|---------|------------------------|---------|---------------|------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       | File ty | pe                     | Product | Specification |            |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |         | rnal public<br>cuments | ;       | Date          | 2020-11-03 |

|   | •                                  | <u> </u>                                                                                                                                            |                                                                                                                                                                                                                                  |
|---|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Bond Strength<br>of<br>Termination | Visual: No visible damage. Capacitance Change: NP0(C0G/C0H): ΔC/C ≤ ±5% or ±0.5pF, whichever is larger; X7R, X5R X7S: ΔC/C≤±12.5%; Y5V: ΔC/C ≤ ±30% | Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. a. Apply a force in the direction shown in Fig. b. Bending 2mm at a speed of 1mm/sec and hold for 5±1secs, then measure the capacitance.     Description |
| 5 | Adhesion                           | Visual: No visible damage.                                                                                                                          | When Soldering the capacitor on a P. C. board, apply a pushing force of 5N for 10±1secs.  Capacitor P.C. Board                                                                                                                   |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |         | Page        | number  | 8 / 14        |            |
|-----------------------------------------------------------|----------------|-----------------------|---------|-------------|---------|---------------|------------|
| File name Multi-layer Ceramic Chip Capacitor              |                |                       | File ty | /pe         | Product | Specification |            |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |         | rnal public |         | Date          | 2020-11-03 |

|   |                             | Visual: No visible damage.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
|---|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Vibration                   | Capacitance Change: NP0(C0G/C0H): $\Delta$ C/C $\leq$ $\pm$ 2.5% or $\pm$ 0.25pF, whichever is larger; X7R, X5R: $\Delta$ C/C $\leq$ $\pm$ 7.5%; X7S: $\Delta$ C/C $\leq$ $\pm$ 15%; Y5V: $\Delta$ C/C $\leq$ $\pm$ 20% | Sample shall be mounted on a suitable substrate.  Amplitude: 1.5mm Frequencies: 10 Hz~55 Hz and Harmonic vibration of uniform changes, 1 minutes sweep cycle.  Repeat this for 2hrs each in 3 perpendicular directions X, Y, Z, total 6hrs.  (Related STD: IEC 68-2-6 test Fc)                                                                                                              |
|   |                             | tgδ and Ri: meet the initial specification in Table 5.                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Rapid change of temperature | Visual: No visible damage.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                             |
| 7 |                             | Capacitance Change: NP0(C0G/C0H): $\Delta$ C/C $\leq$ $\pm$ 2.5% or $\pm$ 0.25pF, whichever is larger; X7R, X5R: $\Delta$ C/C $\leq$ $\pm$ 15%; X7S: $\Delta$ C/C $\leq$ $\pm$ 20%; Y5V: $\Delta$ C/C $\leq$ $\pm$ 20%  | Special preconditioning for 1hr at 150 °C followed by 24hrs. Fix the capacitor to the supporting jig. Expose the capacitors in the condition step 1 through 4 and perform 5 cycles.  Step temperature (°C) time 1 $\theta_A$ 30 min 2 25 2~5 min 3 $\theta_B$ 30 min 4 25 2~5 min NP0(C0G/C0H), X7R,X7S: $\theta_A$ =-55 °C, $\theta_B$ =125 °C; X5R: $\theta_A$ =-55 °C, $\theta_B$ =85 °C |
|   |                             | $tg\delta$ and Ri: meet the initial specification in Table 5.                                                                                                                                                           | Y5V: θA=-30°C,θB=85°C<br>Recover it, let sit at room temperature for<br>6~24hrs [C0G/C0H(NP0)] or 24±2hrs (X7R,<br>X5R,Y5V,X7S), then observe appearance<br>and measure electrical characteristics.                                                                                                                                                                                         |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |  | Page        | number        | 9 / 14 |            |
|-----------------------------------------------------------|----------------|-----------------------|--|-------------|---------------|--------|------------|
| File name Multi-layer Ceramic Chip Capacitor              |                | File type Prod        |  | Product     | Specification |        |            |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |  | rnal public | ;             | Date   | 2020-11-03 |

|   |                             | Visual: No visible damage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |
|---|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                             | Capacitance Change: NP0(C0G/C0H): $\Delta$ C/C $\leq$ ±5% or ±0.5pF, whichever is larger; X7R, X5R: $\Delta$ C/C $\leq$ ±12.5%; X7S: $\Delta$ C/C $\leq$ ±30%; Y5V: $\Delta$ C/C $\leq$ ±30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |
| 8 | Damp Heat<br>(Steady State) | $\begin{array}{c} tg\delta: \\ NP0(C0G/C0H): \\ tg\delta \!\! \leq \!\! 20 \! \times \! 10^{-4} \; (C \!\! \geq \!\! 30 pF) \; or \\ tg\delta \!\! \leq \!\! 2 \! \times \! (90/C \!\! + \!\! 7) \! \times \! 10^{-4} (C \!\! < \!\! 30 pF); \\ X7R: tg\delta \!\! \leq \!\! 2 \! \times \! (90/C \!\! + \!\! 7) \! \times \! 10^{-4} (C \!\! < \!\! 30 pF); \\ X7S: tg\delta \!\! \leq \!\! 2 \! \times \! the \; initial \; specification \; in \; Table5; \\ X5R: tg\delta \!\! \leq \!\! 2 \! \times \! the \; initial \; specification \; in \; Table5; \\ X5R: tg\delta \!\! \leq \!\! 1200 \! \times \! 10^{-4} \\ Y5V: U_R \!\! \geq \!\! 25V \qquad tg\delta \!\! \leq \!\! 950 \! \times \! 10^{-4} \\ U_R \!\! = \!\! 16V \qquad tg\delta \!\! \leq \!\! 1300 \! \times \! 10^{-4} \\ U_R \!\! < \!\! 16V \qquad tg\delta \!\! \leq \!\! 1600 \! \times \! 10^{-4}. \end{array}$ | Special preconditioning for 1hr at 150°C followed by 24hr  Test Temperature: 60°C ±2°C  Humidity: RH 90~95%  Duration:500hrs  Recover it, let sit at room temperature for 6~24hrs [C0G/C0H(NP0)] or 24±2hrs(X7R,X5R,Y5V,X7S), then observe appearance and measure electrical characteristics. |
|   |                             | Ri: NP0(C0G/C0H): Ri $\geq$ 2500M $\Omega$ or Ri $\times$ C $\geq$ 50s, which is smaller; X7R,X5R,Y5V,X7S: Ri $\geq$ 1000M $\Omega$ or Ri $\times$ C $\geq$ 50s (U <sub>R</sub> $\geq$ 25V), which is smaller; Ri $\geq$ 1000M $\Omega$ or Ri $\times$ C $\geq$ 10s (U <sub>R</sub> $\leq$ 16V), which is smaller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |    | Page                   | number        | 10 / 14 |            |
|-----------------------------------------------------------|----------------|-----------------------|----|------------------------|---------------|---------|------------|
| File name Multi-layer Ceramic Chip Capacitor              |                | File ty               | pe | Product                | Specification |         |            |
| Issued No.                                                | SGVX-CCF202011 | Confidentiality level |    | rnal public<br>cuments | :             | Date    | 2020-11-03 |

|   |                     |                          | 16 (61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uo. | caments                                                                                                                                            |                                                                                                                                                                                                 |                                                                                 |
|---|---------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|   |                     | Visual: No visible damag | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                 |
| 9 | Damp heat with load |                          | oF) or $0^{-4}$ (C<30pF); cification in Table5; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ ; $0^{-4}$ | ·   | Remove and temperature. Test Tempera Humidity: RI Test Voltage: Duration: 500 Charge/disch Recover it, 16~24hrs (X7R,X5R appearance characteristic | Perform initial ature: $60\pm2^{\circ}\text{C}$ ; H $90\sim95\%$ ; $1.0\times\text{U}_{R}$ ; Ohrs; arge current no let sit at room [COG/COH(NPC A,Y5V,X7S]) and measures. ( X5R≥ ang for 1hr at | t exceeds 50mA.  temperature for  ))] or 24±2hrs  then observe  sure electrical |
|   |                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                 |

| VIYUNG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                |                       |                   | Page              | number        | 11 / 14 |            |
|----------------------------------------------------------|----------------|-----------------------|-------------------|-------------------|---------------|---------|------------|
| File name Multi-layer Ceramic Chip Capacitor             |                | File t                | File type Product |                   | Specification |         |            |
| Issued No.                                               | SGVX-CCF202011 | Confidentiality level | _                 | rnal publicuments | С             | Date    | 2020-11-03 |

|    |           | Visual: No visible damage.                                                                                |                                             |
|----|-----------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|
|    |           |                                                                                                           |                                             |
|    |           | Capacitance Change:                                                                                       |                                             |
|    |           | NP0(C0G/C0H): $\Delta$ C/C $\leq$ ±3% or ±0.3pF, which is                                                 |                                             |
|    |           | larger;                                                                                                   |                                             |
|    |           | X7R, X5R: ΔC/C≤±15%;                                                                                      |                                             |
|    |           | X7S: ΔC/C≤±30%;                                                                                           | Special preconditioning for 1hr at 150 ℃    |
|    |           | Y5V: ΔC/C≤±30%.                                                                                           | followed by 24hrs                           |
|    |           | Tgδ:                                                                                                      | Test Temperature:                           |
|    |           | NP0(C0G/C0H):                                                                                             | NP0(C0G/C0H)/X7R/X7S: 125°C;                |
|    |           | $tg\delta \le 20 \times 10^{-4} (C \ge 30 pF) \text{ or}$                                                 | `                                           |
|    |           | $tg\delta \le 2 \times (90/C+7) \times 10^{-4} (C < 30pF);$                                               | X5R/Y5V: 85°C;                              |
|    |           | X7R:tgδ≤700×10 <sup>-4</sup> ;                                                                            | Duration: 1000hrs;                          |
| 10 | Endurance | X7S:tgδ≤2×the initial specification in Table5;                                                            | Test Voltage: 1.5×U <sub>R</sub>            |
| 10 | Endurance | $X/S$ .tg6 $\le 2 \times$ the initial specification in Table5,<br>$X5R$ : tg6 $\le 1200 \times 10^{-4}$ ; | Recover it, let sit at room temperature for |
|    |           | ,                                                                                                         | 6~24hrs [C0G/C0H(NP0)] or 24±2hrs           |
|    |           | Y5V:U <sub>R</sub> ≥25V $tg\delta$ ≤950×10 <sup>-4</sup>                                                  | ( X7R,X5R,Y5V,X7S ) , then observe          |
|    |           | $U_{R} = 16V \qquad tg\delta \leq 1300 \times 10^{-4}$                                                    | appearance and measure electrical           |
|    |           | $U_R < 16V tg\delta \le 1600 \times 10^{-4}$ .                                                            | characteristics. ( X5R≥100nF Special        |
|    |           | Ri:                                                                                                       | preconditioning for 1hr at 150°C followed   |
|    |           | NP0(C0G/C0H): Ri $\geq$ 1000MΩ or Ri $\times$ C $\geq$ 50s,which                                          | by 24±4hrs).                                |
|    |           | is smaller;                                                                                               |                                             |
|    |           | X7R,X5R,Y5V,X7S:                                                                                          |                                             |
|    |           | $Ri \ge 1000M\Omega$ or $Ri \times C \ge 50s$ ( $U_R \ge 25V$ ), which is                                 |                                             |
|    |           | smaller;                                                                                                  |                                             |
|    |           | $Ri \ge 1000M\Omega$ or $Ri \times C \ge 10s$ ( $U_R \le 16V$ ), which is                                 |                                             |
|    |           | smaller.                                                                                                  |                                             |
|    |           | Smanor.                                                                                                   |                                             |

| VIIYO      | CTRONIC TECHNOLOGY CO., LTD.       |                       |                           | Page number     |      | 12 / 14 |               |
|------------|------------------------------------|-----------------------|---------------------------|-----------------|------|---------|---------------|
| File name  | Multi-layer Ceramic Chip Capacitor |                       |                           | File type Produ |      | Product | Specification |
| Issued No. | SGVX-CCF202011                     | Confidentiality level | External public documents |                 | Date |         | 2020-11-03    |

- 5. Packaging, Shipment and storage:
- 5.1 Packing:
- 5.1.1 Packing type:

Reel Packaging (standard carrier tape disc packaging), single disc smallest package are shown in Table 4.

5.1.2 Carrier Tape size:

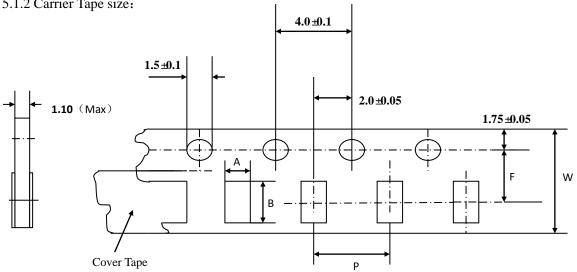



Figure 2 Carrier

Table 7 Carrier size

|                                                               | Size of product |           |           |           |  |  |
|---------------------------------------------------------------|-----------------|-----------|-----------|-----------|--|--|
| Mark                                                          | 0402            | 0603      | 0805      | 1206      |  |  |
|                                                               | Size (Unit: mm) |           |           |           |  |  |
| A ( Width of the square hole )                                | $0.70\pm0.10$   | 1.00±0.20 | 1.60±0.20 | 2.00±0.20 |  |  |
| B ( Length of the square hole )                               | 1.20±0.10       | 1.80±0.20 | 2.40±0.20 | 3.60±0.20 |  |  |
| F (Center distance between positioning hole and square hole ) | 3.50±0.05       | 3.50±0.05 | 3.50±0.05 | 3.50±0.05 |  |  |
| P ( Square hole spacing )                                     | 2.00±0.10       | 4.00±0.10 | 4.00±0.10 | 4.00±0.10 |  |  |
| W (Width of carrier)                                          | 8.00±0.20       | 8.00±0.20 | 8.00±0.20 | 8.00±0.20 |  |  |

| VIIYONG GUANGDONG VIIYONG ELECTRONIC |                                              |                       | OGY CO.                   | , LTD.    | Page | number                | 13 / 14    |
|--------------------------------------|----------------------------------------------|-----------------------|---------------------------|-----------|------|-----------------------|------------|
| File name                            | File name Multi-layer Ceramic Chip Capacitor |                       |                           | File type |      | Product Specification |            |
| Issued No.                           | SGVX-CCF202011                               | Confidentiality level | External public documents |           | ;    | Date                  | 2020-11-03 |

## 5.1.3 Disc size:

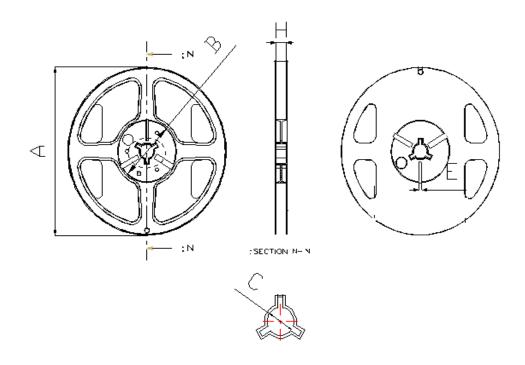
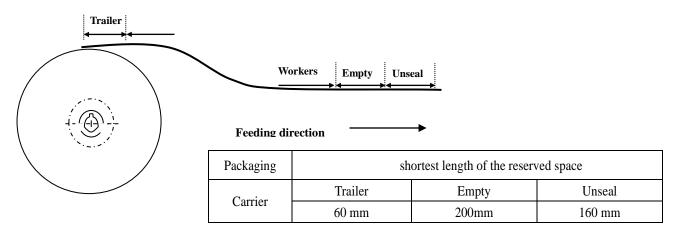




Figure 3 Disc

Table 8 Disc size

| Disc Size | A/mm     | B/mm     | C/mm    | E/mm  | H/mm    |
|-----------|----------|----------|---------|-------|---------|
| 7"        | Ф178±2.0 | Ф60±2.0  | Ф13±1.0 | 4±1.0 | 9.5±1.0 |
| 13"       | Ф330±2.0 | Ф100±2.0 | Ф13±1.0 | 3±1.0 | 10±1.0  |

# 5.1.4 Carrier specifications:

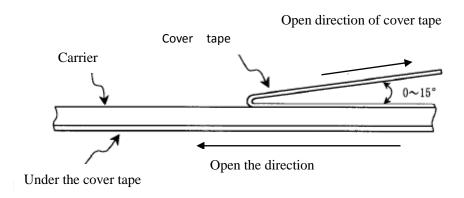


| VIIYO      | NG GUANGDONG VIIYONG ELE                     | GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD. |                           |           |   | number                | 14 / 14    |
|------------|----------------------------------------------|---------------------------------------------------|---------------------------|-----------|---|-----------------------|------------|
| File name  | File name Multi-layer Ceramic Chip Capacitor |                                                   |                           | File type |   | Product Specification |            |
| Issued No. | SGVX-CCF202011                               | Confidentiality level                             | External public documents |           | С | Date                  | 2020-11-03 |

### 5.1.5 Performance of Carrier Taping:

### 5.1.5.1 Strength of Carrier Tape and Top Cover Tape:

### a. Carrier Tape


When a tensile force 1.02kgf is applied in the direction to unreel the tape, the tape shall withstand this force.

### b. Top cover Tape

When a tensile force 1.02kgf is applied to the tape, the tape shall withstand this force.

### 5.1.5.2 Peeling Strength of Top Cover Tape:

Unless otherwise specified, the peeling strength of top cover tape shall be within 10.2 to 71.4 gf when the top cover tape is pulled at a speed of 300mm/min with the angle of 0 to 15 (see the following figure).



### 5.2 Shipment:

It must not be got rain, snow, and must avoid erosion of acid and alkali during the course of shipment.

#### 5.3 Storage:

Period of Store:

12 months, otherwise, its solderability must be inspected again.

Condition of Store:

Temperature: Below  $35^{\circ}$ C Humidity: Below RH70%.