

FH8223G2

单串高精度二合一锂电池保护芯片

特点

- 单节锂离子或锂聚合物电池的理想保护电路
- 高精度的过电压充电保护电压检测 4.400V± 25mV
- 高精度的过放保护电压检测
- 高精度过电流放电保护检测 VEDI 0.15V± 20 mV
- 高精度过电流充电保护检测 VECI -0.15V± 20 mV
- 可选择多种型号的检测电压和延迟时间
- 可选择不同型号 0V-电池充电允许/禁止
- 帯有自动恢复功能的低功耗模式
- 内部集成 RC、内置 MOSFET (需较少外围器件)
- 超小型化的 DFN2X3-6L 封装
- MOSFET: $R_{SS(on)} \le 50 \text{m} \Omega \text{ (V}_{GS} = 3.7 \text{V}, I_D = 1 \text{A})$

应用

- 锂电池的充电、放电保护电路
- 电话机电池或其它锂电池高精度保护器

概述

FH8223G2 系列电路是一款高精度的单节可充电锂电池的内置 MOSFET 保护电路,它集高精度过电压充电保护、过电压放电保护、过电流放电保护等性能于一身。

正常状态下,FH8223G2的 Vop端电压在过电压充电保护阈值(Voc)和过电压放电保护阈值(Vop)之间,且其 VM 检测端电压在充电器检测电压(Vchg)与过电流放电保护阈值(V_{EDI})之间,此时FH8223G2分别使内置N-MOS 管 M1 和放电控制 N-MOS 管 M2 导通。这时,既可以使用充电器对电池充电,也可以通过负载使电池放电。

FH8223G2 通过检测 VDD 或 VM 端电压(相对于 Vss端)来进行过充/放电保护。当充/放电保护条件发生时,内置 M1/M2 由导通变为截止,从而充/放电过程停止。

FH8223G2对每种保护状态都有相应的恢复条件,当恢复条件满足以后,内置 M1/M2 由截止变为导通,从而进入正常状态。

FH8223G2 对每种保护/恢复条件都设置了一定的延迟时间,只有在保护/恢复条件持续到相应的时间以后,才进行相应的保护/恢复。如果保护/恢复条件在相应的延迟时间以前消除,则不进入保护/恢复状态。

FH8223G2 是 DFN2X3-6L 封装,内部集成 RC、内置MOSFET,特别适合在空间有限的电池电源系统中使用。

管脚排列

顶视图

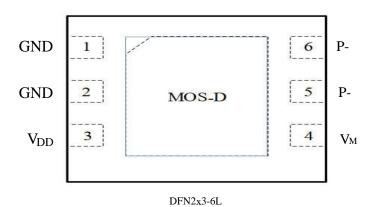


图-2 FH8223G2 管脚排列 (不成比例)

电压检测阈值及延迟时间

[表 2] 电压检测阈值及延迟时间

参数名称	FH8223G2	精度范围
过电压充电保护阈值 V _{OCTYP}	4.400V	±25 m V
过电压充电恢复阈值 V _{OCRTYP}	4.200V	±50 mV
过电压放电保护阈值 V _{ODTYP}	2.700V	±75 m V
过电压放电恢复阈值 V _{ODRTYP}	3 0 0 0 V	±75 m V
过电流放电保护阈值 V _{EDITYP}	0.150V	±20 mV
过电流充电保护阈值 VECITYP	-0.150V	±20 mV
过电压充电保护延迟时间 toctyp	80ms	±30%
过电压放电保护延迟时间 toDTYP	40ms	±30%
过电流放电保护延迟时间 t EDITYP	7.0ms	±30%
过电流充电保护延迟时间 t _{ECITYP}	7.0ms	±30%
0V 充电功能	允许	
低功耗模式	允许	
自动恢复功能	允许	

功能框图

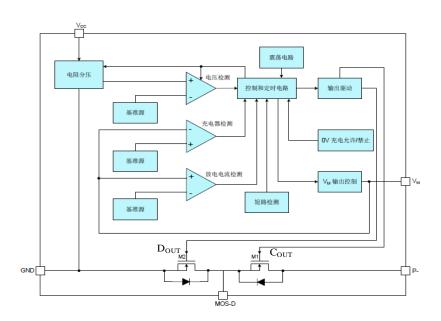
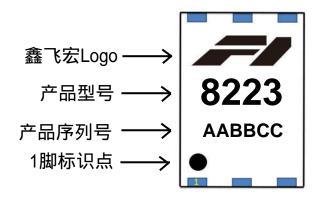



图 1 FH8223G2 功能框图

印字说明

FH8223G2 产品印字说明(与实物不成比例)

引脚描述

[表 3] 引脚描述

引脚名称	引脚序号	I/O	引脚功能
GND	1, 2	POW	电源接地端,与供电电源(电池)的负极相连。
V_{DD}	3	POW	电源输入端,与供电电源(电池)的正极连接。
V _M	4	I	充/放电电流检测输入端
P-	5, 6	I/O	与充电器或负载的负极连接。
MOS-D	Expose Pad	0	两个 MOSFET 的共漏连接端。

极限参数

贮存温度 55℃ ~125℃
功耗 Po(Ta=25℃)
DFN2X3-6L 封装(热阻 θл=80℃/W)1.5W
焊接温度(锡焊,10 秒)260℃
ESD 保护 (人体模式) 2kV

注:超出所列的极限参数可能导致器件的永久性损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数

(除非特别注明, 典型值的测试条件为: VDD=3.6V, TA=25℃。标注"◆"的工作温度为: -40℃≤TA≤85℃)

[表-4] 电气参数

参数名称	符号	测试条件		最小值	典型值	最大值	单位
供电电源	V _{CC}		•	1.5		10	V
过电压充电保护阈值				V _{OCTYP} -0.025	V _{OCTYP}	V _{OCTYP} +0.025	V
(由低到高)	V _{oc}		•	V _{OCTYP} -0.080	V _{OCTYP}	V _{OCTYP} +0.080	V
过电压充电恢复阈值	.,			V _{OCRTYP} -0.050	V _{OCRTYP}	V _{OCRTYP} +0.050	V
(由高到低)	V _{OCR}		•	V _{OCRTYP} -0.080	V _{OCRTYP}	V _{OCRTYP} +0.080	V
过电压充电保护延迟时间	toc	V _{CC} =3.6V→4.4V		0.7×t _{OCTYP}	toctyp	1.3×t _{OCTYP}	ms
过电压放电保护阈值	.,			V _{ODTYP} -0.075	V _{ODTYP}	V _{ODTYP} +0.075	V
(由高到低)	V _{OD}		•	V _{ODTYP} -0.105	V _{ODTYP}	V _{ODTYP} +0.105	V
过电压放电恢复阈值	.,			V _{ODRTYP} -0.075	V _{ODRTYP}	V _{ODRTYP} +0.075	V
(由低到高)	V _{ODR}		•	V _{ODRTYP} -0.105	V _{ODRTYP}	V _{ODRTYP} +0.105	V
过电压放电保护延迟时间	t _{OD}	V _{CC} =3.6V→2.4V		0.7×t _{ODTYP}	t _{ODTYP}	1.3×t _{ODTYP}	ms
过电流放电保护阈值	V _{EDI}			V _{EDITYP} -0.020	V _{EDITYP}	V _{EDITYP} +0.020	V
过电流放电保护延迟时间	t _{EDI}			0.7×t _{EDITYP}	T _{EDITYP}	1.3×t _{EDITYP}	ms
过电流放电恢复延迟时间	t _{EDIR}			1.20	1.80	2.40	ms
过电流充电保护阈值	V _{ECI}			V _{ECITYP} -0.020	V _{ECITYP}	V _{ECITYP} +0.020	V
过电流充电保护延迟时间	t _{ECI}			0.7×t _{ECITYP}	T _{ECITYP}	1.3×t _{ECITYP}	ms
过电流充电恢复延迟时间	t _{ECIR}			1.20	1.80	2.40	ms
	V _{SHORT}	Voltage of V _M		0.7	1	1.3	V
电池短路保护延迟时间	t _{SHORT}			20	50	100	μs
	V _{CHG} =V _{ECI}	V _{CC} =3.0V		V _{ECITYP} -0.020	V _{ECITYP}	V _{ECITYP} +0.020	V
V _M 至 V _{cc} 之间的上拉电阻	R _{VMD}	V_{CC} =1.8V, V_{M} =0V		100	300	900	kΩ
V _M 至 GND 之间的下拉电阻	R _{VMS}			15	30	45	kΩ
电源电流	I _{cc}	V _{CC} =3.9V			2.0	6.0	μA
低功耗模式静态电流	I _{PDWN}	V _{CC} =2.0V			0.7	1.0	μΑ
OV 充电允许电压阈值 (OV 充电允许型号)	V _{0V_CHG}	Charger Voltage		1.2			V
OV 充电禁止阈值 (OV 充电禁止型号)	V _{0V_INH}	Battery Voltage, V _M =-2.0V				1.2	V
N-MOSFET					1		
漏-源极击穿电压 (MOS-D 至 P- / MOS-D 至 GND)	BV _{DS}	V _{GS} =0, I _D =250μA		20			V
击穿电压温度系数	Δ BV _{DS} / Δ T _j	Reference to 25°C, I _D =1mA			0.1		V/°C
静态源-源极通态电阻 (P-至 GND)	R _{SS(ON)}	V _{GS} =3.7V, I _O =1A			38	50	mΩ
		V _{GS} =2.7V, I _O =1A			42	60	mΩ
连续漏电流	I _{DS}	T _j =25°C				5	Α
漏-源极漏电流 (MOS-D 至 P- / MOS-D 至 GND)	I _{DSS}	V _{DS} =19V,V _{GS} =0V T _j =25°C				1	μA

- 注: 1. 除非特别注明, 所有电压值均相对于Vss而言
 - 2. 参见应用线路图 3。

功能描述

FH8223G2 是一款高精度的锂电池保护电路。正常状下,如果对电池进行充电,则 FH8223G2 可能会进入过电压充电保护状态;同时,满足一定条件后,又会恢复到正常状态。如果对电池放电,则可能会进入过电压放电保护状态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。图 3 示出了其典型应用线路图,图 4 是其状态转换图。下面就各状态进行详细描述。

正常状态

在正常状态下,FH8223G2由电池供电,其 VDD端电压在过电压充电保护阈值 Voc 和过电压放电保护阈值 VoD 之间,VM端电压在充电器检测电压(VCHG)与过电流放电保护阈值(VEDI)之间,COUT端和 DOUT端都输出高电平,外接充电控制 N-MOS 管 M1 和放电控制N-MOS 管 M2 均导通。此时,既可以使用充电器对电池充电,也可以通过负载使电池放电。

过电压充电保护状态

• 保护条件

正常状态下,对电池进行充电,如果使 Voo 端电压升高超过过电压充电保护阈值 Voc,且持续时间超过过电压充电保护延迟时间toc,则 FH8223G2 将使充电控制端 Cour 由高电平转为 Vm端电平(低电平),从而使外接充电控制 N-MOS 管 M1 关闭,充电回路被"切断",即 FH8223G2 进入过电压充电保护状态。

• 恢复条件

有以下两种条件可以使 FH8223G2从过电压充电保护状态恢复到正常状态: 1) 电池由于"自放电"使 VDD 端电压低于过电压充电恢复阈值 VOCR: 2) 通过负载使电池放电(注意,此时虽然 M1 关闭,但由于其体内二极管的存在,使放电回路仍然存在),当 VDD 端电压低于过电压充电保护阈值 VOC,且 VM 端电压高于过电流放电保护阈值 VEDI(在 M1 导通以前,VM 端电压将比 VSS端高一个二极管的导通压降)。

FH8223G2 恢复到正常状态以后,充电控制端 Соuт 将输出高电平,使外接充电控制 N-MOS 管 M1 回到导通状态。

FH8223G2 进入过电压充电保护状态后,如果外部一直接有充电器,致使 V_M 电压小于充电器检测电压 (V_{CHG}),那么即使当其 V_{DD} 降至 V_{OCR} 以下,FH8223G2 也不会恢复到正常状态。此时必须去掉充电器,FH8223G2 才会回到正常状态。

过电压放电保护/低功耗状态

• 保护条件

正常状态下,如果电池放电使 V_{DD} 端电压降低至过电压放电保护阈值 V_{OD},且持续时间超过过电压放电保护延迟时间 t_{OD},则FH8223G2 将使放电控制端 D_{OUT} 由高电平转为 V_{SS} 端电平(低电平),从而使外接放电控制 N-MOS 管 M2 关闭,放电回路被"切断",即FH8223G2进

入过电压放电保护状态。同时,V_M端电压将通过内部电态阻 R_{VMD} 被上拉到 V_{DD}。

在过电压放电保护状态下, V_M 端(亦即 V_{DD} 端)电压总是高于电池短路保护阈值 V_{SHORT} ,满足此条件后,电路会进入"省电"的低功耗模式。此时, V_{DD} 端的电流将低于 $0.7\mu A$ 。

• 恢复条件

对于处在低功耗模式下电路,如果对电池进行充电(同样,由于 M2 体内二极管的存在,此时的充电回路也是存在的),使 FH8223G2 电路的 VM 端电压低于电池短路保护阈值 Vshort,则它将恢复到过电压放电保护状态,此时,放电控制端 Dout 仍为低电平,M2 还是关闭的。如果此时停止充电,由于 VM 端仍被 RVMD 上拉到 VDD,大于电池短路保护阈值 Vshort,因此 FH8223G2 又将回到

低功耗模式; 只有继续对电池充电,当 V_{DD}端电压大于过电压放电保护阈值 V_{OD}时,FH8223G2才可从过电压放电保护状态恢复到正常状态。

如果不使用充电器,由于电池去掉负载后的"自升压",可能会使 Vop 端电压超过过电压放电恢复阈值 VopR,此时 FH8223G2 也将从过电压放电保护状态恢复到正常状态:

FH8223G2 恢复到正常状态以后,放电控制端 Dout 将输出高电平,使外接充电控制 N-MOS 管 M2 回到导通状态。

过电流放电

• 保护条件

正常状态下,通过负载对电池放电,FH8223G2电路的 V_M 端电压将随放电电流的增加而升高。如果放电电流增加使 V_M 端电压超过过电流放电保护阈值 V_{EDI} ,且持续时间超过过电流放电保护延迟时间 t_{EDI} ,则FH8223G2 进入过电流放电保护状态;

FH8223G2处于过电流放电,Dour 端将由高电平转为 Vss 端电平,从而使外接放电控制 N-MOS 管 M2 关闭,放电回路被"切断";同时,VM 端将通过内部电阻 Rvмs 连接到 Vss,放电负载取消后,VM 端电平即变为 Vss 端电平。

• 恢复条件

在过电流放电保护状态下,当 V_M端电压由高降低至低于过电流放电保护阈值 V_{EDI},且持续时间超过过电流放电恢复延迟时间 t_{EDIR},则 FH8223G2 可恢复到正常状态。因此,在过电流放电保护状态下,当所有的放电负载取消后,FH8223G2 即可"自恢复"。

FH8223G2恢复到正常状态以后,放电控制端 Dour 将输出高电平,使外接充电控制 N-MOS 管 M2 回到导通状态。

过电流充电

• 保护条件

正常状态下,使用充电器对电池进行充电, V_M端

电压将随充电电流的增加而降低。如果充电电流增加使 Vm端电压低于过电流充电保护阈值 Veci,且持续时间超 过过电流充电保护延迟时间 teci,则FH8223G2 进入过电 流充电保护状态;

FH8223G2 处于过电流充电, C_{OUT} 端将由高电平转为 V_{M} 端电平,从而使外接放电控制 N-MOS 管 M1 关闭,充电回路被"切断"。

• 恢复条件

在过电流充电保护状态下,如果取消充电器,当 V_M 端电压将升高至高于过电流充电保护阈值 V_{ECI} ,且持续时间超过过电流充电恢复延迟时间 t_{ECIR} ,则FH8223G2可恢复到正常状态。

FH8223G2 恢复到正常状态以后,放电控制端 Соит 将输出高电平,使外接充电控制 N-MOS 管 M1 回到导通状态。

充电器检测

FH8223G2 处于过电压放电保护状态下,如果外部接有充电器,致使 V_M端电压低于充电器检测电压(V_{CHG}),

则只要FH8223G2 的 V_{DD} 电压大于 V_{DD}, FH8223G2即可恢复到正常状态;如果充电器电压不能使 V_M 端电压低于 V_{CHG},则 V_{DD} 电压必须大于 V_{ODR}, FH8223G2 才能恢复到正常状态。这就是通常所说的充电器检测功能。

0V 电池充电

• 0V 电池充电允许

对于 0V 电池充电允许的电路,如果使用充电器对电池充电,使 FH8223G2电路的 VDD 端相对 VM 端的电压大于 0V 充电允许阈值 Vov_CHG 时,其充电控制端 COUT将被连接到 VDD 端。若该电压能够使外接充电控制 N-MOS 管 M1 导通,则通过放电控制 N-MOS 管 M2 的体内二极管可以形成一个充电回路,使电池电压升高;当电池电压升高至使 VDD端电压超过过电压放电保护阈值 VOD时,FH8223G2 将回到正常状态,同时放电控制端 DOUT输出高电平,使外接放电控制 N-MOS 管处于导通状态。

• 0V 电池充电禁止

对于 0V 电池充电禁止的电路,如果电池电压低至使 FH8223G2 电路的 V_{DD} 端电压小于 0V 充电禁止阈值 V_{NOCHG} ,则其充电控制端 C_{OUT} 将被短接到 V_{M} 端,使外接充电控制 N-MOS 管始终处于关闭状态。

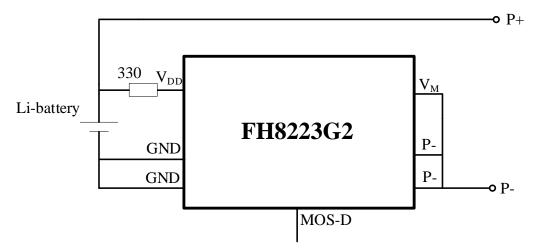


图-3 FH8223G2 典型应用电路图(vdd 电阻可以提高生产环节中的保护能力)

各状态之间的转换图

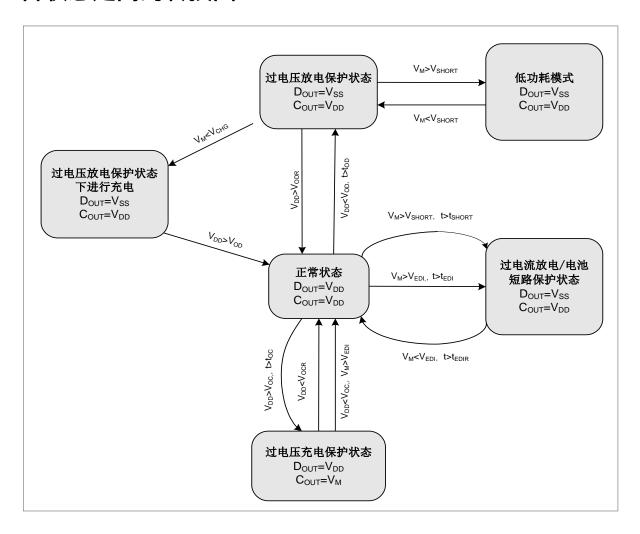


图-4 FH8223G2 各状态之间的转换图

状态转换波形图

过电压充电保护和过电压放电保护状态

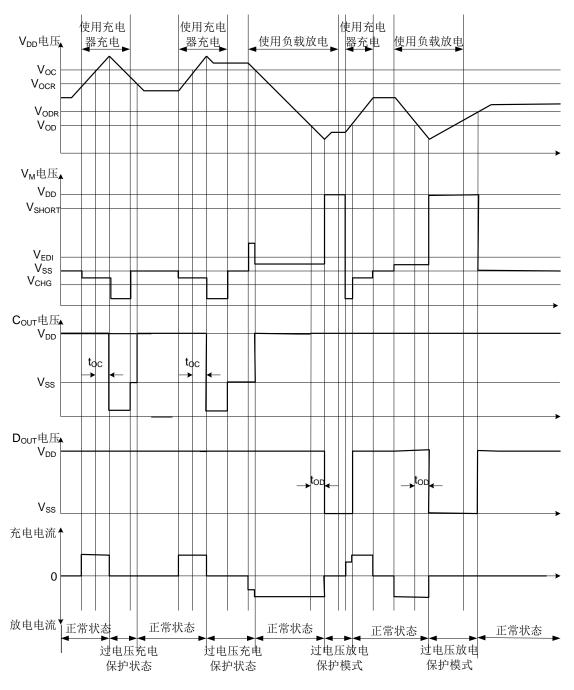


图-5 过电压充电和过电压放电保护状态各点波形图

过电流放电

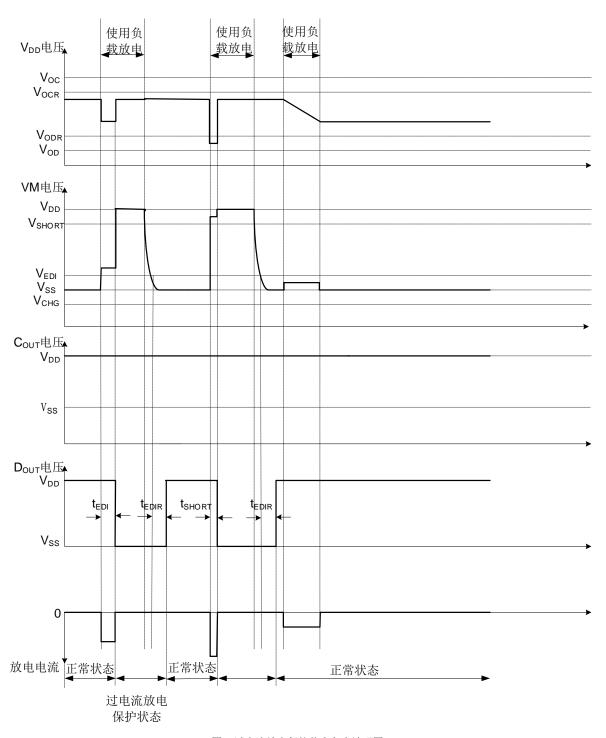
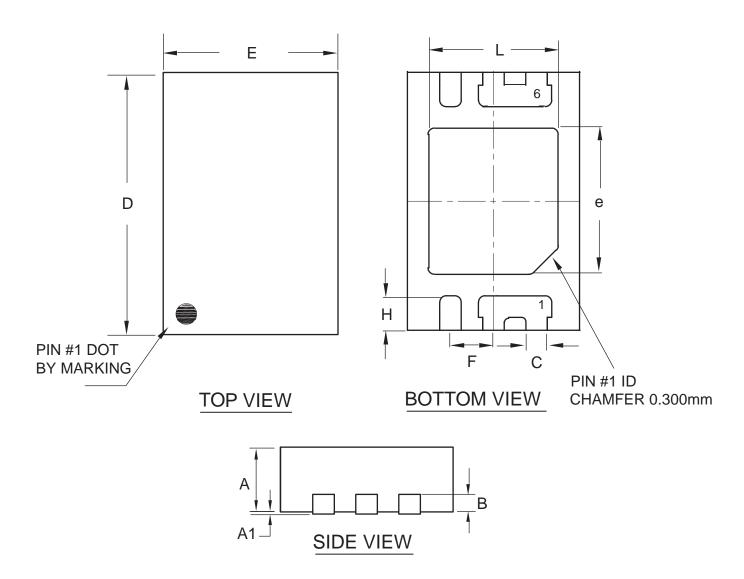



图-6 过电流放电保护状态各点波形图

封装尺寸: DFN2X3-6L

SYMBOLS	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
D	2.950	3.050	0.116	0.120	
E	1.950	2.050	0.077	0.081	
Н	0.250	0.450	0.014	0.018	
L	1.450	1.550	0.057	0.061	
е	1.650	1.750	0.065	0.069	
В	0.195	0.211	0.0076	800.0	
С	0.200	0.300	800.0	0.012	
F	0.500 BSC		0.020 BSC		

重要声明

- 深圳市鑫飞宏电子有限公司保留不发布通知而对该产品和服务随时进行修正、更改、补充、改进和其它变动的权利。用户敬请在购买产品之前获取最新的相关信息并核实该信息是最近的和完整的。所有产品在定单确认后将遵从深圳市鑫飞宏电子有限公司的销售条款和条例进行销售。
- •本资料内容未经深圳市鑫飞宏电子有限公司许可,严禁以其他目的加以转载或复制等。
- 对于未经销售部门咨询使用本产品而发生的损失,深圳市鑫飞宏电子有限公司不承担其责任。