

Spec No. :DS86-2017-0028 Effective Date: 03/03/2018 Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

OPTICAL SENSOR LTR-381RGB-MT

Description

The LTR-381RGB-MT is an integrated low voltage I2C ambient light sensor (ALS) and a color sensor (CS) in a single 2x2mm miniature ChipLED lead-free surface mount package.

With the advanced RGB color sensor, this sensor converts light (Red, Green, Blue, and IR) intensity to a digital output signal capable of direct I2C interface. The ALS provides a linear response over a wide dynamic range, which is well suited to applications under very low or bright ambient brightness.

The sensor has a programmable interrupt with hysteresis to response to events and that removes the need to poll the sensor for a reading which improves system efficiency. This CMOS design and factory-set one time trimming capability ensure minimal sensor-to-sensor variations for ease of manufacturability to the end customers.

Application

Control brightness and color of display panel in mobile, computing, and consumer devices.

Features

- I²C interface (Standard mode @100kHz or Fast mode @400kHz)
- Ambient Light / Advanced RGB in ultra-small chipled package
- Very low power consumption with sleep mode capability
- Operating voltage ranges: 1.7V to 3.6V
- Operating temperature ranges: -40 to +85 °C
- Built-in temperature compensation circuit
- Programmable interrupt function for ALS with upper and lower thresholds
- RoHS and Halogen free compliant

RGB/ALS Features

- > 16 to 20 bits effective resolution
- > Wide dynamic range with linear response
- > Close to human eye spectral response
- Automatic rejection for 50Hz/60Hz lighting flicker

Ordering Information

Packaging Type	Package	Quantity
Tape and Reel	6-pin chipled package	2500

1. Outline Dimensions

2/34

2. Functional Block Diagram

LTR-381RGB-MT contains different photodiodes for ALS/CS (red, green, blue, and IR channel) measurement. The photodiode currents are converted to digital values by ADCs. The sensor also includes some peripheral circuits such as an internal oscillator, a current source, voltage reference, and internal fuses to store trimming information.

GND

3/34

3. Application Circuit

I/O Pins Configuration Table

Pin	I/O Type	Symbol	Description
1	Supply	VDD	Power Supply Voltage
2		NC	Reserved for internal test. Do not connect at application circuit level.
3	Ground	GND	Ground
4	I	SCL*	I ² C serial clock. This pin is an open drain input.
5	0	INT*	Level Interrupt Pin. This pin is an open drain output.
6	I/O	SDA*	l²C serial data. This pin is an open drain input / output.

* Note: For noisy environment, add 10pF capacitor from signal to GND for additional noise filtering.

Recommended Application Circuit Components

Component	Recommended Value
Rp1, Rp2 [1], Rp3	1 k Ω to 10 k Ω
C1	0.1uF
C2	1uF

Notes:

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I2C Specifications: <u>http://www.nxp.com/documents/user_manual/UM10204.pdf</u>

4/34

OPTICAL SENSOR LTR-381RGB-MT

4. Rating and Specification

4.1. Absolute Maximum Rating at Ta=25℃

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	VDD		3.63	V
Digital Voltage Range	SCL, SDA, INT	-0.5	3.63	V
Storage Temperature	T _{stg}	-40	95	°C
Electrostatic Discharge Protection Note 1 (Human Body Model JESD22-A114)	V _{HBM}	2000		V

Note:

- 1. ESD V_{HMB} for pin 2 (NC) is 1000V. This pin is reserved for internal test, do not connect at application circuit level.
- 2. Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

4.2. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	1.7		3.6	V
Interface signal input high	V _{I2Chigh}	1.5		VDD	V
Interface signal input low	V _{I2Clow}	0		0.4	V
Operating Temperature	T _{ope}	-40		85	°C

4.3. Electrical Specifications (VDD = 3.0V, Ta=25°C, unless otherwise noted)

	· · · · ·				· ·
Parameter	Min.	Тур.	Max.	Unit	Condition
ALS Active Supply Current		120		uA	Default duty cycle, VDD=3.0V, Gain 3x
CS Active Supply Current		120		uA	Default duty cycle, VDD=3.0V
Standby Current		1.2		uA	Standby Mode
Wakeup Time from Standby		0.5	10	ms	From Standby to Active mode where measurement can start

5/34

OPTICAL SENSOR LTR-381RGB-MT

4.4. Characteristics Ambient Light/Color Sensor (VDD = 3.0V, Ta=25℃, unless otherwise noted)

Parameter	Min.	Тур.	Max.	Unit	Condition
ALS/CS Resolution	16		20	Bit	Programmable for 16, 17, 18, 19, 20 Bit
Dark Level Count		0	5	Count	0 Lux, 18-bit resolution
Lux Accuracy	-10		+10	%	Direct illumination
Color temperature Accuracy	-5		+5	%	Based on XYZ coordinate, no window.
50/60 Hz flicker noise error	-5		+5	%	
Temperature Dependency	-0.25		+0.25	%/°C	At 100 Lux
Voltage Dependency	-5		+5	%	At 100 Lux, At operating voltage ranges
Integration time	25		400	ms	With 50/60Hz Rejection

4.5. Typical Device Parameter

(VDD = 3.0V, Ta=25°C, Default power-up settings, unless otherwise noted)

OPTICAL SENSOR LTR-381RGB-MT

4.8. AC Electrical Characteristics

All specifications are at VBus = 1.7V, $T_{ope} = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	f_{SCL}	1	400	kHz
Bus free time between a STOP and START condition	t _{BUF}	1.3		us
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{HD;STA}$	0.6		us
LOW period of the SCL clock	t _{LOW}	1.3		us
HIGH period of the SCL clock	t _{HIGH}	0.6		us
Set-up time for a repeated START condition	t _{SU;STA}	0.6		us
Set-up time for STOP condition	$t_{SU;STO}$	0.6		us
Rise time of both SDA and SCL signals	t _r	30	300	ns
Fall time of both SDA and SCL signals	t_f	30	300	ns
Data hold time	$t_{HD;DAT}$	0.3	0.9	us
Data setup time	$t_{SU;DAT}$	100		ns
Pulse width of spikes which must be suppressed by the input filter	t _{sp}	0	50	ns

Definition of timing for I²C bus

7/34

5. Principle of Operation

I²C Protocols

• I²C Write Protocol (type 1):

· I²C Write Protocol (type 2):

• I²C Read Protocol:

Data Sheet

OPTICAL SENSOR LTR-381RGB-MT

• I²C Read (Combined format) Protocol:

I2C Slave Address

The device has a 7-bit slave address of 0x53. A read/write bit should be appended to the slave address by the

master device to properly communicate with the device.

	I ² C Slave Address (Default)								
Command		(0x53)							
Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	value
Write	1	0	1	0	0	1	1	0	0xA6H
Read	1	0	1	0	0	1	1	1	0xA7H

OPTICAL SENSOR LTR-381RGB-MT

6. Register Set

Addr	R/W	Register Name	Description	Reset Value
0x00	RW	MAIN_CTRL	Operation mode control, SW reset	0x00
0x01~0x03	R	Reserved		
0x04	R/W	ALS_CS_MEAS_RATE	ALS/CS measurement rate and resolution in Active Mode	0x22
0x05	R/W	ALS_CS_GAIN	ALS/CS analog Gain	0x01
0x06	R	PART_ID	Part number ID and revision ID	0xC2
0x07	R	MAIN_STATUS	Power-On status, Interrupt status, Data status	0x20
0x08~0x09	R	Reserved		
0x0A	R	CS_DATA_IR_0	CS IR ADC measurement data,LSB	0x00
0x0B	R	CS_DATA_IR_1	CS IR ADC measurement data	0x00
0x0C	R	CS_DATA_IR_2	CS IR ADC measurement data, MSB	0x00
0x0D	R	CS_DATA_GREEN_0	CS green / ALS ADC measurement data, LSB	0x00
0x0E	R	CS_DATA_GREEN_1	CS green / ALS ADC measurement data	0x00
0x0F	R	CS_DATA_GREEN_2	CS green / ALS ADC measurement data, MSB	0x00
0x10	R	CS_DATA_RED_0	CS red ADC measurement data, LSB	0x00
0x11	R	CS_DATA_RED_1	CS red ADC measurement data	0x00
0x12	R	CS_DATA_RED_2	CS red ADC measurement data, MSB	0x00
0x13	R	CS_DATA_BLUE_0	CS blue ADC measurement data, LSB	0x00
0x14	R	CS_DATA_BLUE_1	CS blue ADC measurement data	0x00
0x15	R	CS_DATA_BLUE_2	CS blue ADC measurement data, MSB	0x00
0x16~0x18	R	Reserved		
0x19	R/W	INT_CFG	Interrupt configuration	0x10
0x1A	R/W	INT_PST	Interrupt persist setting	0x00
0x1B~0x20	R	Reserved		
0x21	R/W	ALS_THRES_UP_0	ALS interrupt upper threshold, LSB	0xFF
0x22	R/W	ALS_THRES_UP_1	ALS interrupt upper threshold, intervening bits	0xFF
0x23	R/W	ALS_THRES_UP_2	ALS interrupt upper threshold, MSB	0x0F
0x24	R/W	ALS_THRES_LOW_0	ALS interrupt lower threshold, LSB	0x00
0x25	R/W	ALS_THRES_LOW_1	ALS interrupt lower threshold, intervening bits	0x00
0x26	R/W	ALS_THRES_LOW_2	ALS interrupt lower threshold, MSB	0x00

MAIN_CTRL Register (0x00) (Read/Write)

This register controls the operation modes of CS/ALS, which can be set to either standby or active mode. When writing to this register, it will cause a stop to any ongoing measurements (CS/ALS) and start new measurement.

0x00		MAIN_CTRL (default = 0x00)							
	B7	B6	B5	B4	B3	B2	B1	В0	
	Reserved			SW Reset	Reserved	CS Mode	ALS CS Enable	Reserved	

Field	Bits	Default	Description													
Reserved	7:5	000		Must write 000												
SW Reset	4	0	0	Software reset is NOT triggered (default)												
SW Reset	Ŧ	0	1	Software reset is triggered												
Reserved	3	0		Must write 0												
CS Mode	2	0	0	ALS mode: ALS, IR and Temperature Compensation Channels activated (default)												
					_	-				I					1	CS mode: All Light Sensor channels activated (RGB+IR+COMP)
ALS/CS Enable	4	0	0	ALS standby (default)												
ALS/US ETIAble	1	0	1	ALS active												
Reserved	0	0		Must write 0												

ALS_CS_MEAS_RATE Register (0x04) (Read/Write)

This register controls ALS/CS measurement resolution, Gain setting and measurement rate. When the measurement rate is programmed to be faster than possible for the programmed ADC measurement, the rate will be lowered than programmed (maximum speed).

0x04		ALS_CS_MEAS_RATE (default = 0x22)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
	Reserved	ALS/CS	Resolution	/Bit Width	Reserved	ALS/CS	S Measurem	ent Rate			

Field	Bits	Default	Description	
Reserved	7	0	Must write 0	
			000	20 Bit, Conversion time = 400ms
			001	19 Bit, Conversion time = 200ms
ALS/CS	6:4	010	010	18 Bit, Conversion time = 100ms(default)
Resolution	0.4	010	011	17 Bit, Conversion time = 50ms
			100	16 Bit, Conversion time = 25ms
			101/110/111	Reserved
Reserved	3	0	Must write 0	
			000	25ms
			001	50ms
ALS/CS			010	100ms (default)
Measurement	2:0	010	011	200ms
Rate			100	500ms
			101	1000ms
			110/111	2000ms

ALS_CS_GAIN Register (0x05) (Read/Write)

This register controls ALS/CS measurement Gain Range.

0x05		ALS_CS_GAIN (default = 0x01)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			Reserved	ALS/	CS Gain Ra	nge					

Field	Bits	Default	Description				
Reserved	7:3	00000	Must writ	Must write 00000			
			000	Gain Range: 1			
ALS/CS	ALS/CS		001	Gain Range: 3 (default)			
Gain	2:0	001	010	Gain Range: 6			
Range			011	Gain Range: 9			
			100	Gain Range: 18			

PART_ID Register (0x06) (Read Only)

This register defines the part number and revision identification of the sensor.

0x06		PART_ID (default = 0xC2)											
	B7		B6	B5	B4	B3	B2	B1	В0				
			Part Nui	mber ID		Reserved							
Field		Bits	Defau	ult De	scription								
Part Numb ID	ber	7:4	1100) Pa	rt Number ID								
Reserved	b	3:0	0010	0									

MAIN_STATUS Register (0x07) (Read Only)

This register stores the information about the ALS/CS interrupts and data status. The interrupt status in Bit 4 determines if the ALS/CS interrupt criteria are met in Normal Interrupt Mode: It triggers when the CS/ALS is above the upper or below the lower threshold for a specified number of consecutive measurements in respective interrupt persist settings. For details interrupt behavior, refer to Section 10.

0x07	MAIN_STATUS (default = 0x00)										
	B7	B6	В5	B4	B3	B2	B1	В0			
	Reserved		Power ON Status	ON Interrupt		Reserved					

Field	Bits	Default	Descrip	tion
Reserved	7:6	00		
			0	Normal
Power On Status	5	1	1	Part went through a power-up event, either because the part was turned on or because there was a power supply voltage disturbance. A value of 1 is the default for the first register read after power-on-reset. The flag is cleared after the flag is read.
ALS/CS Interrupt	4	0	0	Interrupt is NOT triggered (default)
Status	4	0	1	Interrupt is triggered and will be cleared after read
			0	CS/ALS data is old data (Data has been read)
CS/ALS Data Status	3	0	1	CS/ALS data is new data (Data has not been read and will be cleared after read)
Reserved	2:0	000		

14/34

CS_DATA_IR Register (0x0A / 0x0B / 0x0C) (Read Only)

The Color Sensor IR Channel digital output data are expressed as a 16 to 20 bit unsigned integer data. When I2C read operation is active and points to any of the register address between 0x07 and 0x18, all 3 registers will be locked until the I2C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the CS_DATA_IR registers will be updated as soon as there is no on-going I2C read operation to the address range 0x07 to 0x18.

0x0A		CS_DATA_IR_0 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
				CS DATA	A IR, Low						

0x0B		CS_DATA_IR_1 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
				CS DATA	IR, Middle						

0x0C		CS_DATA_IR_2 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
		Reserved CS DATA IR, High									

Field	Address	Bits	Default	Description
CS Data IR, Low	0x0A	7:0	0000 0000	CS Data (IR) lower byte data
CS Data IR, Middle 0x0B		7:0	0000 0000	CS Data (IR) Middle byte data
	0.400	7:4	0000	Reserved
CS Data IR, High	0x0C	3:0	0000	CS Data (IR) Higher byte data

15/34

CS_DATA_GREEN Register (0x0D / 0x0E / 0x0F) (Read Only)

LTEON®

OPTOELECTRONICS

The Color Sensor Green Channel digital output data are expressed as a 16 to 20 bit unsigned integer data. When I2C read operation is active and points to any of the register address between 0x07 and 0x18, all 3 registers will be locked until the I2C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the CS_DATA_GREEN registers will be updated as soon as there is no on-going I2C read operation to the address range 0x07 to 0x18.

0x0D		CS_DATA_GREEN_0 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
		CS DATA GREEN, Low									

0x0E		CS_DATA_GREEN_1 (default = 0x00)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
			(CS DATA GF	REEN, Middl	le				

0x0F		CS_DATA_GREEN_2 (default = 0x00)								
	B7	B6	В5	B4	B3	B2	B1	B0		
		Rese	erved		CS DATA GREEN, High					

Field	Address	Bits	Default	Description
CS Data Green, Low	0x0D	7:0	0000 0000	CS Data (Green) lower byte data
CS Data Green, Middle	0x0E	7:0	0000 0000	CS Data (Green) Middle byte data
			0000	Reserved
CS Data Green, High	0x0F	3:0	0000	CS Data (Green) Higher byte data

CS_DATA_RED Register (0x10 / 0x11 / 0x12) (Read Only)

The Color Sensor Red Channel digital output data are expressed as a 16 to 20 bit unsigned integer data. When I2C read operation is active and points to any of the register address between 0x07 and 0x18, all 3 registers will be locked until the I2C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the CS_DATA_RED registers will be updated as soon as there is no on-going I2C read operation to the address range 0x07 to 0x18.

0x10	CS_DATA_RED_0 (default = 0x00)								
	B7	B6 B5 B4 B3 B2 B1							
				CS DATA	RED, Low				

0x11		CS_DATA_RED_1 (default = 0x00)								
	B7	B6	B5	B4	B3	B2	B1	В0		
				CS DATA F	ED, Middle					

0x12		CS_DATA_RED_2 (default = 0x00)								
	B7	B6	B5	B4	B3	B2	B1	В0		
		Rese	erved		CS DATA RED, High					

Field	Address	Bits	Default	Description
CS Data Red, Low	0x10	7:0	0000 0000	CS Data (Red) lower byte data
CS Data Red, Middle	0x11	7:0	0000 0000	CS Data (Red) Middle byte data
	010	7:4	0000	Reserved
CS Data Red, High	0x12	3:0	0000	CS Data (Red) Higher byte data

17/34

CS_DATA_BLUE Register (0x13 / 0x14 / 0x15) (Read Only)

The Color Sensor Blue Channel digital output data are expressed as a 16 to 20 bit unsigned integer data. When I2C read operation is active and points to any of the register address between 0x07 and 0x18, all 3 registers will be locked until the I2C read operation has been completed or the specified address range is left. This is to ensure that the data in the registers is from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the CS_DATA_BLUE registers will be updated as soon as there is no on-going I2C read operation to the address range 0x07 to 0x18.

0x13	CS_DATA_BLUE_0 (default = 0x00)									
	B7	B6	В5	B4	B3	B2	B1	B0		
	CS DATA BLUE, Low									
0x14		CS_DATA_BLUE_1 (default = 0x00)								
	B7	B6	B5	B4	В3	B2	B1	В0		

0x15		CS_DATA_BLUE_2 (default = 0x00)							
	B7	B6	В5	B4	B3	B2	B1	В0	
		Rese	erved			CS DATA E	BLUE, High		

Field	Address	Bits	Default	Description
CS Data Blue, Low	0x13	7:0	0000 0000	CS Data (Blue) lower byte data
CS Data Blue, Middle	0x14	7:0	0000 0000	CS Data (Blue) Middle byte data
			0000	Reserved
CS Data Blue, High	0x15	3:0	0000	CS Data (Blue) Higher byte data

INT_CFG Register (0x19) (Read/Write)

This register controls the operation of the interrupt pin and functions. CS/ALS has independent interrupt signal and CS/ALS interrupt is active low. CS/ALS interrupt is enabled by Bit 2.

0x19		INT_CFG (default = 0x10)									
	B7	B6	В5	B4	B3	B2	B1	В0			
	Rese	erved	ALS INT	SELECT	Reserve d	ALS INT PIN ENABLE	Res	served			

Field	Bits	Default	Description		
Reserved	7:6	00	Must write 00		
			00 IR Channel		
	4:5	01	01 ALS/Green Channel(default)		
ALS Interrupt Select	4.5		10 Blue Channel		
			11 Red Channel		
Reserved	3	0	Must write 0		
	2	0	0 ALS interrupt disabled (default)		
ALS Interrupt Pin Enable	2		1 ALS interrupt enabled		
Reserved	1:0	00	Must write 00		

19/34

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

INT_PST Register (0x1A) (Read/Write)

This register controls the N number of times the measurement data is outside the range defined by the upper and lower threshold limits before asserting the interrupt.

0x1A	INT_PST (default = 0x00)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS/CS Persist Reserved							

Field	Bits	Default	Description		
	ALS/CS 7:4 0000	0000	Every ALS value out of threshold range asserts an interrupt (default)		
ALS/CS		0001	2 consecutive ALS values out of threshold range assert an interrupt		
Persist					
			1111	16 consecutive ALS values out of threshold range assert an interrupt	
Reserved	3:0	0000	0000	Must write 0000	

ALS_THRES Register (0x21 / 0x22 / 0x23 / 0x24 / 0x25 / 0x26) (Read/Write)

The ALS_THRES_UP (up to 20-bits) and ALS_THRES_LOW (up to 20-bits) registers determines the upper and lower limit of the interrupt threshold value respectively. Interrupt will be triggered if measurement data in CS_DATA_GREEN registers is exceeding the upper and lower limits.

0x21	ALS_THRES_UP_0 (default = 0xFF)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
	ALS Upper Threshold, Low								

0x22	ALS_THRES_UP_1 (default = 0xFF)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		ALS Upper Threshold, Mid							

0x23		ALS_THRES_UP_2 (default = 0x0F)						
	B7	B7 B6 B5 B4 B3 B2 B1 B0						
		Res	erved		A	LS Upper Th	nreshold, H	igh

0x24	ALS_THRES_LOW_0 (default = 0x00)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		ALS Lower Threshold, Low							

0x25	ALS_THRES_LOW_1 (default = 0x00)								
	B7	B7 B6 B5 B4 B3 B2 B1 B0							
		ALS Lower Threshold, Mid							

0x26	ALS_THRES_LOW_2 (default = 0x00)							
	B7	B7 B6 B5 B4 B3 B2 B1 B0						
		Res	erved		A	LS Lower TI	hreshold, H	ligh

Field	Address	Bits	Default	Description
ALS Upper Threshold, Low	0x21	7:0	1111 1111	ALS upper interrupt threshold, Low byte
ALS Upper Threshold, Mid	0x22	7:0	1111 1111	ALS upper interrupt threshold, Mid byte

21/34

OPTICAL SENSOR LTR-381RGB-MT

ALS Upper Threshold, High	0,222	7:4	0000	Reserved
ALS Opper Threshold, High	0x23	3:0	1111	ALS upper interrupt threshold, High byte
ALS Lower Threshold, Low	0x24	7:0	0000 0000	ALS lower interrupt threshold, Low byte
ALS Lower Threshold, Mid	0x25	7:0	0000 0000	ALS lower interrupt threshold, Mid byte
ALC Lower Threshold Llink	000	7:4	0000	Reserved
ALS Lower Threshold, High	0x26	3:0	0000	ALS lower interrupt threshold, High byte

7 Application Information

7.1. Lux Formula

Lux_Calc is the calculated lux reading based on the output ADC from ALS DATA regardless of light sources.

$$Lux_{Calc} = \frac{0.8 \times CS_{Green_DATA}}{(GAIN \times INT)} \times \left[1 - C_1 \left(\frac{CS_{IR_DATA}}{CS_{Green_DATA}}\right)\right] \times W_{FAC}$$

Where :

- 1. CS_Green_DATA = Data stored in the registers (Address: 0x0D-0x0F)
- 2. CS_IR_DATA = Data stored in the registers (Address: 0x0A-0x0C)
- 3. $C_1 = 0.033$ constant coefficient.
- 4. For device under tinted window with coated-ink of flat transmission rate at 400-600nm wavelength, window factor is to compensate light loss due to the lower transmission rate from the coated-ink.
 - a. WFAC = 1 for NO window / clear window glass.
 - b. WFAC >1 device under tinted window glass. Calibrate under white LED.
- 5. The Gain factors & Integration time factors:

ALS Gain	GAIN	Resolution (bit) / Integration Time (ms)	INT
X1	1	16-bit, 25ms	0.25
Х3	3	17-bit, 50ms	0.5
X6	6	18-bit, 100ms	1
X9	9	19-bit, 200ms	2
X18	18	20-bit, 400ms	4

7.2 Device Operation (State Machine and Interrupt Features)

State Machine

Below diagram is the main state machine of LTR-381RGB-MT.

During the CS/ALS Operation, CS/ALS measurements can be activated by setting the CS_ALS_Enable bit to 1. As soon as the CS/ALS sensors become activated through an I2C command, the internal support blocks are powered on. Once the voltages and currents are settled (typically after 5ms), the state machine checks for trigger events from a measurement scheduler to start CS/ALS conversions according to the selected measurement repeat rates. Once CS_ALS_Enable is changed back to 0, a running conversion on the respective channel will be completed and the relevant ADCs and support blocks will move to power-down state.

24/34

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

OPTICAL SENSOR LTR-381RGB-MT

Interrupt Features

This device generates independent ALS/CS interrupt signal that can be multiplexed and output to the INT output pin. The interrupt conditions are always evaluated after completion of a new conversion of the ALS channels. ALS/CS interrupts is active low at the INT pin.

ALS/CS Interrupt

The ALS/CS interrupt is enabled by Bit 2 (ALS INT Pin Enabled) of INT_CFG register (0x19). The ALS/CS interrupt source can be any of the four CS channels (R, G, B and IR). The source is selected by Bit 4 and 5 (ALS INT Select) of INT_CFG register.

The INT is set when the data of the selected interrupt source is above the upper or below the lower threshold for a specified number of consecutive measurements set in ALS/CS Persist in INT_PST register (0x1A).

The Interrupt signal is also stored in MAIN_STATUS register (0x07) as flag bit in Bit 4 (ALS/CS INT Status). This status flag bit is cleared by reading the MAIN_STATUS register. A cleared flag will also clear the interrupt signal on the INT pin.

25/34

Data Sheet

8 Pseudo Codes Examples

MAIN_CTRL Register

// This defines the operating modes of the CS/ALS
// Default settings is 0x00 (CS Mode = ALS, ALS/CS standby)

Register_Addr = 0x00 // MAIN_CTRL register Command = 0x06 // ALS in Active Mode, CS mode = CS WriteByte(Slave_Addr, Register_Addr, Command);

ALS_CS_MEAS_RATE Register

// This controls the ALS/CS measurement resolution and measurement rate.
// Default setting of the register is 0x22 (Resolution = 18 Bit, Measurement rate of 100ms)

Register_Addr = 0x04Command = 0x41 // ALS_CS_MEAS_RATE register
// Resolution = 16 bit, Meas Rate =50ms
// Command =0x25, Resolution = 18 bit, Meas Rate =1000ms
// Command =0x02, Resolution = 20 bit, Meas Rate =100ms

WriteByte(Slave_Addr, Register_Addr, Command)

ALS_CS_GAIN Register

// This controls the ALS/CS Gain Range.
// Default setting of the register is 0x01 (Gain Range = 3)

Register_Addr = 0x05Command = 0x00 // ALS_CS_GAIN register // Gain = 1 // Command =0x04, Gain = 18

WriteByte(Slave_Addr, Register_Addr, Command)

MAIN_STATUS Register (Read Only)

// This Register contains the information on Interrupt, ALS/CS data status.

Register_Addr = 0x07 Data = ReadByte(Slave_Addr, Register_Addr)

Power_ON_Status = Data & 0x20

ALS/CS_Interrupt_Status = Data & 0x10

ALS/CS_Data_Status = Data & 0x08

// MAIN_STATUS register address

// If 0x20 Part went through power-up event
// If 0x00 Normal
// If 0x10 Interrupt triggered
// If 0x00 Interrupt condition not fulfilled
// If 0x08 ALS/CS data is new
// If 0x00 Old (previously read) Data

CS_DATA_IR Registers (Read Only)

//The register 0x0A contains CS_IR ADC lower byte data. //The register 0x0B contains CS_IR ADC 1 middle byte data. //The register 0x0C contains CS_IR ADC 2 upper byte data. //These registers should be read as a group, with the lower address being read first.

Register_Addr = 0x0A Data0=ReadByte(Slave_Addr, Register_Addr) Register_Addr = 0x0B Data1=ReadByte(Slave_Addr, Register_Addr) Register_Addr = 0x0C Data2=ReadByte(Slave_Addr, Register_Addr) // CS_DATA_IR_0 low byte address
// CS_DATA_IR_1 middle byte address
// CS_DATA_IR_2 upper byte address

26/34

Part No. : LTR-381RGB-MT

BNS-OD-FC002/A4

Confidential

CS_IR_Data =(Data2<<16)| (Data1 << 8) | Data0

// Shift and combine all register data to get CS_IR ADC Data

CS_DATA_GREEN Registers (Read Only)

// The register 0x0D contains CS_GREEN ADC lower byte data. // The register 0x0E contains CS_GREEN ADC 1 upper byte data. // The register 0x0F contains CS_GREEN ADC 2 (top) upper byte data. // These registers should be read as a group, with the lower address being read first. Register_Addr = 0x0D // CS_DATA_GREEN_0 low byte address Data0=ReadByte(Slave_Addr, Register_Addr) Register_Addr = 0x0E // CS_DATA_GREEN_1 middle byte address Data1=ReadByte(Slave_Addr, Register_Addr) Register_Addr = 0x0F // CS_DATA_GREEN_2 upper byte address Data2=ReadByte(Slave_Addr, Register_Addr) CS_GREEN_ADC_Data =(Data2<<16)| (Data1 << 8) | Data0</pre>

// Shift and combine all registers to get CS_GREEN ADC Data

CS_DATA_RED Registers (Read Only)

//The register 0x10 contains CS_RED ADC lower byte data. //The register 0x11 contains CS_RED ADC 1 upper byte data. //The register 0x12 contains CS_RED ADC 2 (top) upper byte data. //These registers should be read as a group, with the lower address being read first.

 Register_Addr = 0x10
 //

 Data0=ReadByte(Slave_Addr, Register_Addr)
 //

 Register_Addr = 0x11
 //

 Data1=ReadByte(Slave_Addr, Register_Addr)
 //

 Register_Addr = 0x12
 //

 Data2=ReadByte(Slave_Addr, Register_Addr)
 //

 CS_RED_ADC_Data =(Data2<<16)| (Data1 << 8) | Data0</td>

// CS_DATA_RED_0 low byte address // CS_DATA_RED_1 middle byte address

// CS_DATA_RED_2 upper byte address

// Shift and combine all registers to get CS_RED ADC Data

CS_DATA_BLUE Registers (Read Only)

// The register 0x13 contains CS_BLUE ADC lower byte data.

// The register 0x14 contains CS_BLUE ADC 1 upper byte data.

// The register 0x15 contains CS_BLUE ADC 2 (top) upper byte data.

// These registers should be read as a group, with the lower address being read first.

Register_Addr = 0x13	<pre>// CS_DATA_BLUE_0 low byte address</pre>
Data0=ReadByte(Slave_Addr, Register_Addr)	
Register_Addr = 0x14	<pre>// CS_DATA_BLUE_1 middle byte address</pre>
Data1=ReadByte(Slave_Addr, Register_Addr)	
Register_Addr = 0x15	<pre>// CS_DATA_BLUE_2 upper byte address</pre>
Data2=ReadByte(Slave_Addr, Register_Addr)	
CS_BLUE_ADC_Data =(Data2<<16) (Data1 << 8) Data	taO
	// Shift and combine all registers to get CS_BLUE ADC Data

INT_CFG Register

//This register controls the operation of the interrupt pins and options to trigger interrupt for ALS/CS. //The default value for this INT_CFG register is 0x10 (Interrupts inactive for both ALS/CS)

Register_Addr = 0x19// INT_CFG Register addressCommand = 0x14// Interrupt CH = ALS, ALS Interrupt Enable, Normal trigger mode.

WriteByte(Slave_Addr, Register_Addr, Command)

27/34

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

OPTICAL SENSOR LTR-381RGB-MT

INTERRUPT_PERSIST Register

// This register sets the ALS/CS persist level.
// The default setting is 0x00. Interrupt at every ALS/CS reading outside set thresholds.

Register_Addr = 0x1ACommand = 0x00

 // INT_PST register

 // Interrupt for every ALS outside threshold

 // Command =0x10
 Subsequent 2 ALS outside threshold range

 // Command =0x30
 Subsequent 4 ALS outside threshold range

WriteByte(Slave_Addr, Register_Addr, Command)

ALS_THRES Registers

//The register 0x21 contains CS/ALS Interrupt upper threshold lower byte data (ALS_THRES_UP_0) //The register 0x22 contains CS/ALS Interrupt upper threshold 1 upper byte data (ALS_THRES_UP_1) //The register 0x23 contains CS/ALS Interrupt upper threshold 2 upper byte data (ALS_THRES_UP_2)

//The register 0x24 contains CS/ALS Interrupt lower threshold lower byte data (ALS_THRES_LOW_0) //The register 0x25 contains CS/ALS Interrupt lower threshold 1 upper byte data (ALS_THRES_LOW_1) //The register 0x26 contains CS/ALS Interrupt lower threshold 2 upper byte data (ALS_THRES_LOW_2)

// To set ALS Upper threshold for Interrupt Upper_Threshold_Value=1000 Data2 = Upper_Threshold_Value >> 16 Data1 = Upper_Threshold_Value >> 8 Data0 = Upper_Threshold_Value & 0xFF

Register_Addr = 0x21 WriteByte(Slave_Addr, Register_Addr, Data0) Register_Addr = 0x22 WriteByte(Slave_Addr, Register_Addr, Data1) Register_Addr = 0x23 WriteByte(Slave_Addr, Register_Addr, Data2)

// To set ALS Lower threshold for Interrupt Lower_Threshold_Value=100 Data2 = Lower_Threshold_Value >> 16 Data1 = Lower_Threshold_Value >> 8 Data0 = Lower_Threshold_Value & 0xFF

Register_Addr = 0x24 WriteByte(Slave_Addr, Register_Addr, Data0) Register_Addr = 0x25 WriteByte(Slave_Addr, Register_Addr, Data1) Register_Addr = 0x26 WriteByte(Slave_Addr, Register_Addr, Data2) // Example 1000
// Shift right to extract the 2 upper byte
// Shift right to extract the 1 upper byte
// Mask to extract lower byte.

// ALS_THRES_UP_0 Register address

// ALS_THRES_UP_1 Register address

// ALS_THRES_UP_2 Register address

// Example 100

// Shift right to extract the 2 upper byte

// Shift right to extract the 1 upper byte

// Mask to extract lower byte.

// CS/ALS_THRES_LOW_0 Register address

// CS/ALS_THRES_LOW_1 Register address

// CS/ALS_THRES_LOW_2 Register address

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

9 Recommended Leadfree Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration	
Heat Up	P1, R1	25°C to 150°C	3°C/s	
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s	
Solder Reflow	P3, R3	200°C to 260°C	3°C/s	
	P3, R4	260°C to 200°C	-6°C/s	
Cool Down	P4, R5	200°C to 25°C	-6°C/s	
Time maintained above liquid's point , 217°C		> 217°C	60s to 90s	
Peak Temperature		260°C	-	
Time within 5°C of actual Peak Temperature		> 255°C	20s	
Time 25°C to Peak Temperature		25°C to 260°C	8mins	

It is recommended to perform reflow soldering no more than twice.

29/34

OPTICAL SENSOR LTR-381RGB-MT

10 Moisture Proof Packaging

All LTR-381RGB-MT are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

Time from Unsealing to Soldering

After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days. When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

Recommended Storage Conditions

Storage Temperature	10°C to 30°C
Relative Humidity	Below 60% RH

Baking Conditions

Package	Temperature	Time
In Reels	60°C	48 hours
In Bulk	100°C	4 hours

Baking should only be done once.

11 Recommended Land Pattern

Recommended Land Pattern for LTR-381RGB-MT

Note: All dimensions are in millimeters

31/34

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

OPTICAL SENSOR LTR-381RGB-MT

12 Metal Stencil Aperture

It is recommended that the metal stencil used for solder paste printing has a thickness (t) of 0.11mm (0.004 inches / 4 mils) or 0.127mm (0.005 inches / 5 mils).

The stencil aperture opening is recommended to be 0.3mm x 0.65mm which has the same dimension as the land pattern. This is to ensure adequate printed solder paste volume and yet no shorting.

Note: 1. All dimensions are in millimeters

13 Tape and Reel Dimensions

Notes:

Confidential

- 1. All dimensions are in millimeters (inches)
- 2. Empty component pockets sealed with top cover tape
- 3. 7 inch reel 2500 pieces per reel
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications

Part No. : LTR-381RGB-MT BNS-OD-FC002/A4

33/34

OPTICAL SENSOR LTR-381RGB-MT

Revision Table:

Version	Update	Page	Date
1.0	Datasheet as created.	Total 34	04-Jul-17
1.1	Update datasheet (Remove extra info and update integration time).	5,6	6-Jul-17
1.2	Update VHBM info.	5	7-Jul-17
1.3	Update register map.	10,17,18,19, 27	11-Aug-17
1.4	Update RGB spectral response chart, update lux formula.	6,23	31-Aug-17
1.5	Update RGB spectral response chart.	6	6-Oct-17

