

TPV324S14/M10

1MHz,Low Power,CMOS,EMI Hardened, Rail to Rail Dual Operational Amplifier

www.sot23.com.tw

General Description

The TPV324 is a single supply, low power CMOS dual operational amplifier; these amplifiers offer bandwidth of 1MHz, rail-to-rail inputs and outputs, and single-supply operation from 2.2V to 5.5V. The embedded anti-RF filter can significantly increase the RF immunity without extra components. Typical low quiescent supply current of 80µA in dual operational amplifiers within one chip and very low input bias current of 10pA make the devices an ideal choice for low offset, low power consumption and high impedance applications such as smoke detectors, photodiode amplifiers, and other sensors.

The TPV324 is available in SOP-14 and MSOP-14 packages. The extended temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C over all supply voltages offers additional design flexibility.

Features

- Single-Supply Operation from +2.2V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 1MHz (Typ.)
- Low Input Bias Current: 10pA (Typ.)
- Low Offset Voltage: 5mV (Max.)
- Quiescent Current: 40µA per Amplifier (Typ.)
- Operating Temperature: -40°C ~ +125°C
- Available in SOP-14 and TSSOP-14 Packages

Applications

- Portable Equipment
- Mobile Communications
- Smoke Detector
- Medical Instrumentation
- · Battery-Powered Instruments
- Sensor Interface
- Handheld Test Equipment

Ordering Information

Part Number	Package	QTY Per Reel	Reel Size
TPV324S14	SOP-14	SOP-14 2500	
TPV324M14	TSSOP-14	3000	13"

Pin Assignments

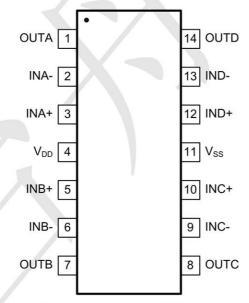
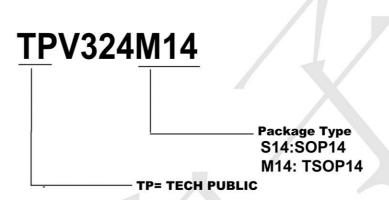


Figure 1. Pin Assignment Diagram (SOP14 and TSSOP14 Package)



TPV324S14/M10

1MHz,Low Power,CMOS,EMI Hardened, Rail to Rail Dual Operational Amplifier

www.sot23.com.tw

Ordering Information

Electrical Characteristics

Absolute Maximum Ratings

Condition	Min	Max	
Power Supply Voltage (VDD to Vss)	-0.5V	+7V	
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	VDD+0.5V	
PDB Input Voltage	Vss-0.5V	+7V	
Operating Temperature Range	-40°C	+125°C	
Junction Temperature	+150°C		
Storage Temperature Range	-65°C	+150°C	
Lead Temperature (soldering, 10sec)	+300°C		
Package Thermal Resistance (Ta=+25°ℂ)			
SOP14, θ _{JA}	90°C		
TSSOP14, θ _{JA}	100°C		

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2021.6.15 2

www.sot23.com.tw

Electrical Characteristics

(VDD = +5V, Vss = 0V, VCM = 0V, VOUT = VDD/2, RL=100K tied to VDD/2, SHDNB = VDD, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA =+25°C.) (Notes 1)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply-Voltage Range	V _{DD}	Guaranteed by the PSRR test	2.2		5.5	V
Quiescent Supply Current (per Amplifier)	ΙQ	V _{DD} = 5V	30	40	60	μΑ
Input Offset Voltage	Vos		-	0.5	±5	mV
Input Offset Voltage Tempco	ΔVos/ΔT		-	2	-	μV/°C
Input Bias Current	Ів	(Note 2)	-//	10		рА
Input Offset Current	los	(Note 2)	-	10	-]	рА
Input Common-Mode Voltage Range	Vсм		-0.1	-	V _{DD} +0.1	V
Common-Mode Rejection Ratio	CMRR	V _{DD} =5.5 Vss-0.1V V _{CM} V _{DD} +0.1V	55	65	-	dB
		Vss≤Vcм≤5V	60	80	-	dB
Power-Supply Rejection Ratio	PSRR	V _{DD} = +2.5V to +5.5V	75	94	-	dB
Open-Loop Voltage Gain	Av	V _{DD} =5V, R _L =100kΩ , 0.05V≤Vo≤4.95V	100	110	-	dB
	1	V _{DD} =5V, R _L =5kΩ , 0.05V≤Vo≤4.95V	70	80	-	dB
Output Voltage Swing	Vouт	Vin+-Vin- γ10mV Vdd-Voh	-	6	-	mV
	1	$R_L = 100k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	-	6	-	mV
		Vin+-Vin- γ10mV Vdd-Voh	-	60	-	mV
		$R_L = 5k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	9	60	-	mV
Output Short-Circuit Current	Isc	Sinking or Sourcing	-	±20	-	mA
Gain Bandwidth Product	GBW	A _V = +1V/V	-	1	-	MHz
Slew Rate	SR	Av = +1V/V	-	0.6	-	V/µs
Settling Time	ts	To 0.1%, Vout = 2V step Av = +1V/V	-	5	-	μs
Over Load Recovery Time		Vın X Gain=Vs	-	2	-	μs
Input Voltage Noise Density	en	f = 10kHz	-	20	-	nV/√Hz

Note 1: All devices are 100% production tested at $T_A = +25$ °C; all specifications over the automotive temperature range is guaranteed by design, not production tested.

Note 2: Parameter is guaranteed by design.

www.sot23.com.tw

Application Information

Size

TPV324 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the TPV324series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

TPV324 series operates from a single 2.2V to 5.5V supply or dual ± 1.1 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

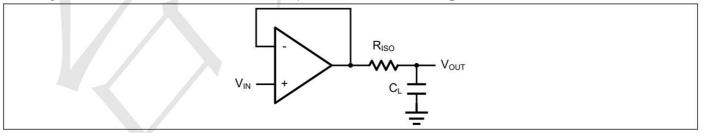
Low Supply Current

The low supply current (typical $80\mu A$) of TPV324 series will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

TPV324 series operate under wide input supply voltage (2.2V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime

Rail-to-Rail Input


The input common-mode range of TPV324 series extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of TPV324 series can typically swing to less than 10mV from supply rail in light resistive loads (>100k Ω), and 60mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The TPV324 series can directly drive 250pF capacitive load in unity-gain without oscillation. Increasing the gain enhances the amplifier's ability to drive greater capacitive loads. In unity-gain configurations, the capacitive load drive can be improved by inserting an isolation resistor R_{ISO} in series with the capacitive load, as shown in *Figure 2*.

2021.6.15

www.sot23.com.tw

Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in *Figure 3* is an improvement to the one in *Figure 2*. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased

by increasing the value of C_F. This in turn will slow down the pulse response.

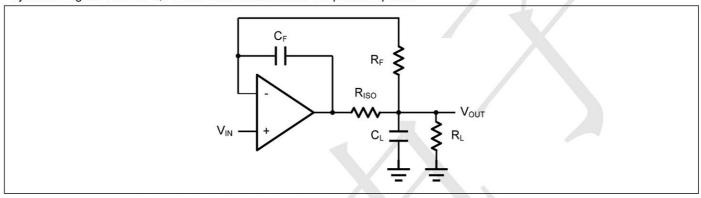


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

5.8 Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. *Figure 4.* shown the differential amplifier using TPV324

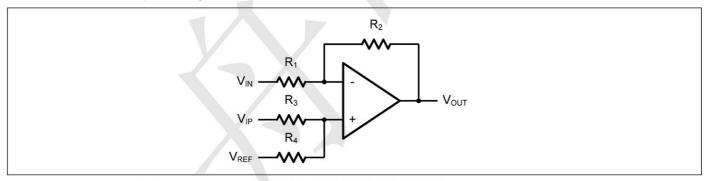


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

5.9 Instrumentation Amplifier

The input impedance of the previous differential amplifier is set by the resistors R1, R2, R3, and R4. To maintain the high input impedance, one can use a voltage follower in front of each input as shown in the following two instrumentation amplifiers.

5.10 Three-Op-Amp Instrumentation Amplifier

The dual TPV324 can be used to build a three-op-amp instrumentation amplifier as shown in *Figure 5*.

www.sot23.com.tw

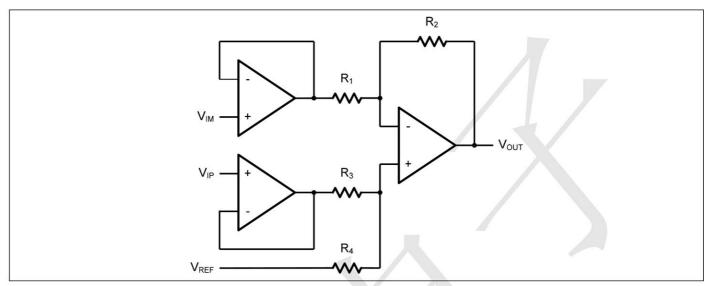


Figure 5. Three-Op-Amp Instrumentation Amplifier

The amplifier in *Figure 5* is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

$$V_o = (1 + \frac{R_4}{R_3})(V_{\rm IP} - V_{\rm IN})$$

5.11 Two-Op-Amp Instrumentation Amplifier

TPV324 can also be used to make a high input impedance two-op-amp instrumentation amplifier as shown in *Figure 6*.

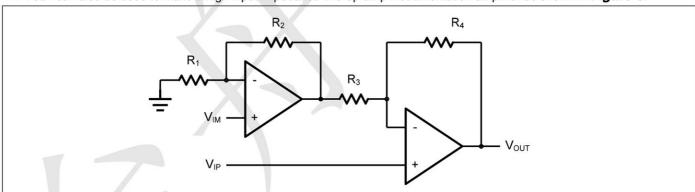


Figure 6. Two-Op-Amp Instrumentation Amplifier

Where R₁=R₃ and R₂=R₄. If all resistors are equal, then V_o = $2(V_{IP}$ - $V_{IN})$

1MHz,Low Power,CMOS,EMI Hardened,

Rail to Rail Dual Operational Amplifier

www.sot23.com.tw

5.12 Single-Supply Inverting Amplifier

The inverting amplifier is shown in Figure 6. The capacitor C₁ is used to block the DC signal going into the AC signal source V_{IN}. The value of R₁ and C₁ set the cut-off frequency to $f_C=1/(2\pi R_1 C_1)$. The DC gain is defined by $V_{OUT}=-(R_2/R_1)V_{IN}$

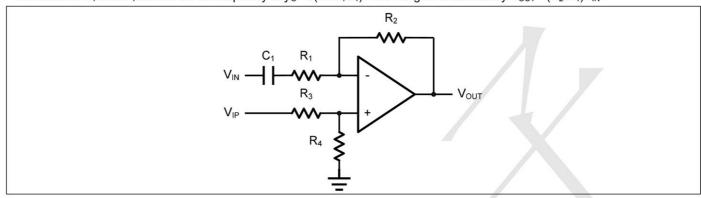


Figure 7. Single Supply Inverting Amplifier

5.13 Low Pass Active Filter

The low pass active filter is shown in **Figure 8**. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3 C_1)$.

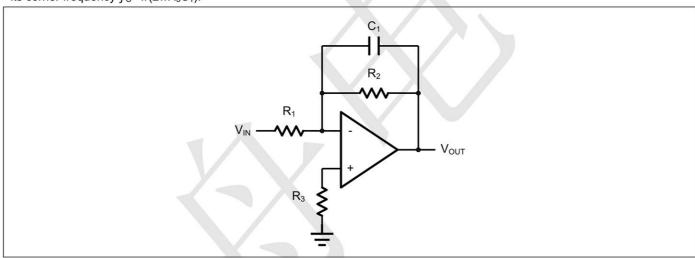


Figure 8. Low Pass Active Filter

5.14 Sallen-Key 2nd Order Active Low-Pass Filter

TPV324 can be used to form a 2nd order Sallen-Key active low-pass filter as shown in *Figure 9*. The transfer function from V_{IN} to Vout is given by

$$\frac{V_{OUT}}{V_{IN}}(S) = \frac{\frac{1}{C_1C_2R_1R_2}A_{LP}}{S^2 + S(\frac{1}{C_1R_1} + \frac{1}{C_1R_2} + \frac{1}{C_2R_3} + \frac{A_{LP}}{C_2R_3}) + \frac{1}{C_1C_2R_1R_2}}$$

Where the DC gain is defined by A_{LP}=1+R₃/R₄, and the corner frequency is given by

$$\mathbf{\omega}_C = \sqrt{\frac{1}{C_1 C_2 R_1 R_2}}$$

The pole quality factor is given by

www.sot23.com.tw

$$\frac{\omega C}{Q} = \frac{1}{C_1 R_1} + \frac{1}{C_1 R_2} + \frac{1}{C_2 R_2} - \frac{A_{LP}}{C_2 R_2}$$

Let R1=R2=R and C1=C2=C, the corner frequency and the pole quality factor can be simplified as below

$$\omega_C = \frac{1}{CR}$$

And $Q=2-R_{3}/R_{4}$

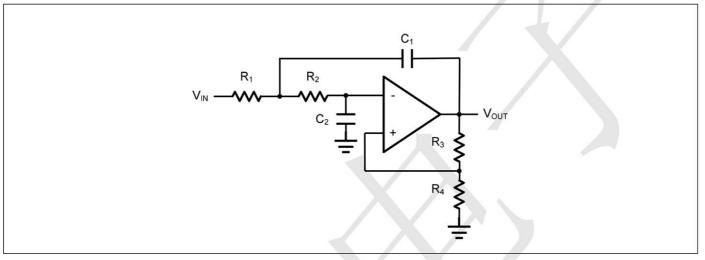


Figure 9. Sanllen-Key 2nd Order Active Low-Pass Filter

5.15 Sallen-Key 2nd Order high-Pass Active Filter

The 2^{nd} order Sallen-key high-pass filter can be built by simply interchanging those frequency selective components R_1 , R_2 , C_1 , and C_2 as shown in *Figure 10*.

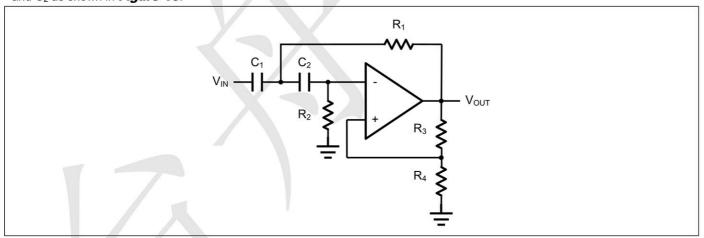
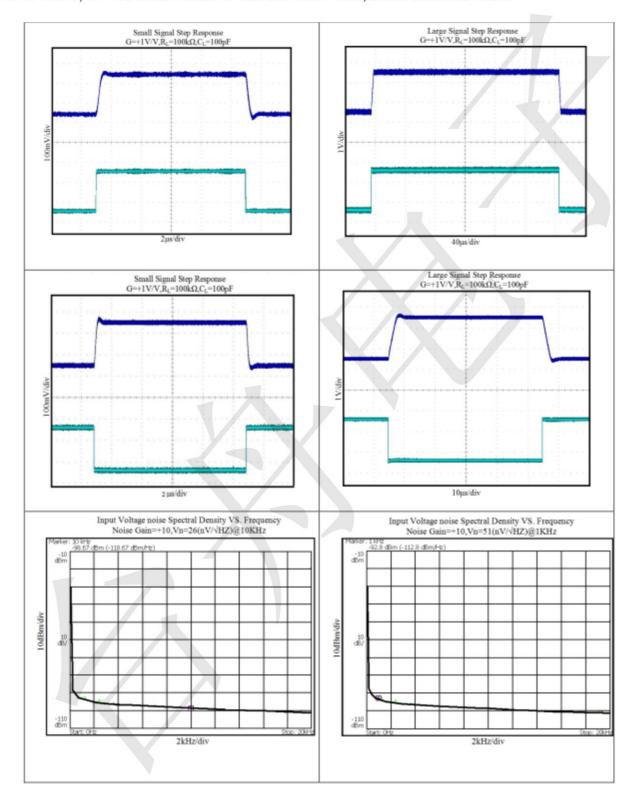
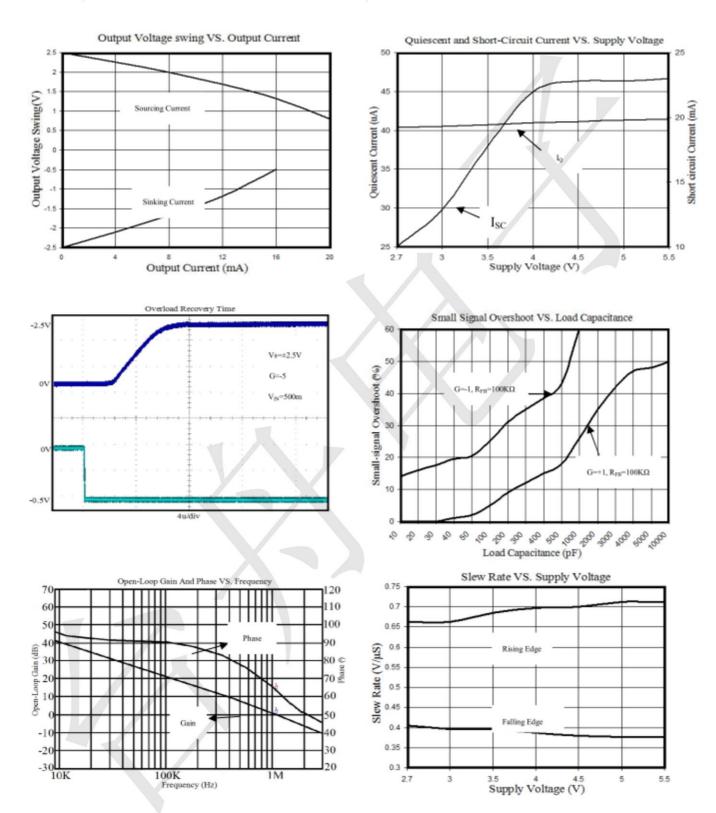


Figure 10. Sanllen-Key 2nd Order Active High-Pass Filter

$$\frac{V_{OUT}}{V_{IN}}(S) = \frac{S^2 A_{HP}}{S^2 + S(\frac{1}{C_1 R_1} + \frac{1}{C_2 R_2} + \frac{1 - A_{HP}}{C_1 R_1}) + \frac{1}{C_1 C_2 R_1 R_2}}$$


Where $A_{HP}=1+R_3/R_4$

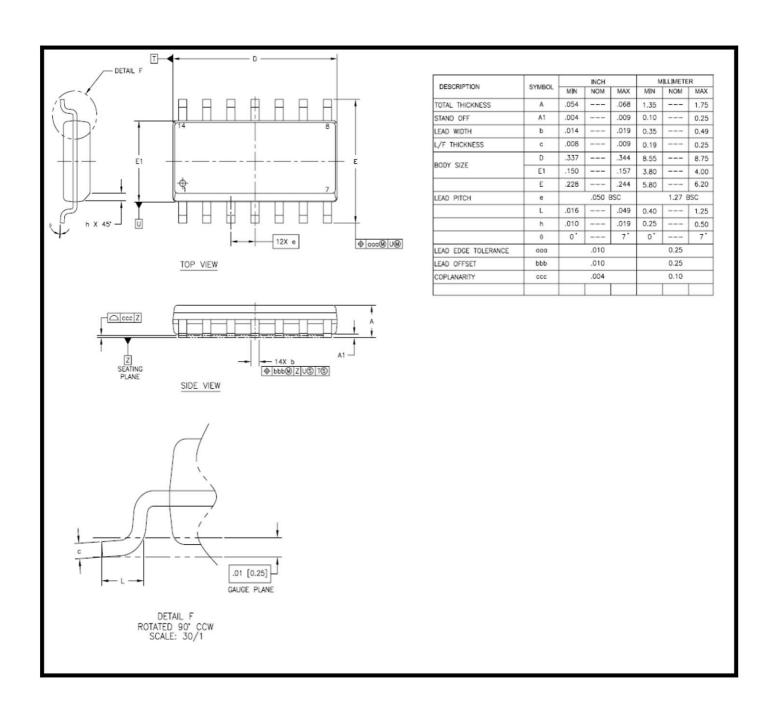
www.sot23.com.tw


Typical characteristics

At TA=+25°C, RL=100 k Ω connected to Vs/2 and VouT= Vs/2, unless otherwise noted.

www.sot23.com.tw

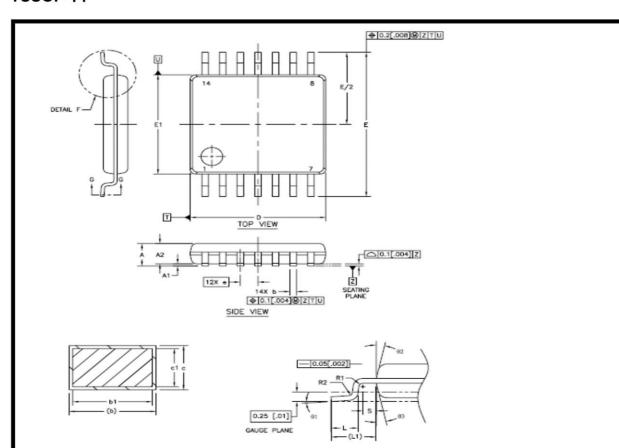
At TA=+25°C, RL=100 kΩ connected to Vs/2 and VouT= Vs/2, unless otherwise noted.


TPV324S14/M10

1MHz,Low Power,CMOS,EMI Hardened, Rail to Rail Dual Operational Amplifier

Package Information

SOP-14


www.sot23.com.tw

11

www.sot23.com.tw

TSSOP-14

SECTION G-G SCALE: 160/1

DESCRIPTION		SYMBOL	MILLIMETER			INCH			
			MIN	NOM	MAX	MIN	NOM	MAX	
TOTAL THICKNESS		A			1.1			.043	
STAND OFF		A1	0.05		0.15	.002		.006	
MOLD THICKNESS		A2	0.85		0.95	.033		.037	
LEAD WIDTH(PLATING)		ь	0.19		0.27	.007		.011	
LEAD WIDTH		b1	0.19		0.25	.007		.010	
L/F THICKNESS(PLATING)		с	0.13		0.18	.005		.007	
L/F THICKNESS		c1	0.09		0.14	.004		.006	
BODY SIZE	x	D	4.9	5	5.1	.193	.197	.201	
	Y	E1	4.3	4.4	4.5	.169	.173	.177	
		E	6.3	6.4	6.5	.248	.252	.256	
LEAD PITCH		e		0.65	BSC	.026 BS		BSC	
		L	0.5	0.6	0.7	.020	.024	.028	
FOOTPRINT		L1		1 B			.039	REF	
		01	0,		8,	0,		8.	
		62		12°T	rP.	12 TY		rP.	
		63 12 TYP		rP.		12 TYP			
		R1	0.09			.004			
		R2	0.09			.004			
		S	0.2			.008			

NOTES

DETAIL F ROTATED 90° CCW SCALE: 20/1

- DIMENSION D AND E1 DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON D IS 0.15mm(.006in) PER SIDE AND ON E1 IS 0.25mm(.010in) PER SIDE.
- DIMENSION 6 DOES NOT INCLUDE DAM BAR PROTRUSION. ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.13mm(.005in) TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.