

DATA SHEET

SKY77928-21 SkyLiTE™ Tx-Rx Front-End Module for Quad-Band GSM / GPRS / EDGE, w/ 16 Linear TRx Switch Ports, Dual-Band TD-SCDMA, TDD LTE Band 39 – Dual Antenna

Applications

- Cellular handsets encompassing Quad-Band GSM/EDGE, Dual-Band TD-SCDMA, and TDD LTE
 - Class 4 GSM850/900
 - Class 1 DCS1800/PCS1900
 - Class 12 GPRS multi-slot operation
 - Linear EDGE operation
 - TD-SCDMA Bands 34/39
 - TDD LTE Band 39
- Carrier Aggregation (CA) with dual antenna

Features

- Small, low profile package
 - 5.5 mm x 5.5 mm x 0.75 mm
 - 44-pad configuration
- MIPI® RFFE control with dual-standard support
 - User-selectable register mappings
 - Linear or VRAMP-based GMSK power control
- \bullet RF ports internally matched to 50 Ω w/ zero DC offset
- High GMSK Efficiency (inclusive of coupler and diplexer)
 - 34% GSM850 34% DCS1800
 - 34% GSM900 34% PCS1900
- Tx harmonics below -40 dBm
- Supports APT, buck DC-DC supply
- 16 low loss/high linearity/high isolation TRx switch ports with excellent cross-band flexibility
- RF input switching to external 3G/4G path
- Three directional couplers: LB/MB/HB
- Downlink inter-band CA support with L+M/H diplexer and separate HB switch/antenna with ultra-low loss and superb linearity
- Noise suppression notch filter for WiFi coexistence
- Built-in IEC-compliant antenna ESD protection
- High impedance control inputs and low standby current
- Current limiting and overvoltage ruggedness
- · Power control circuitry built-in for improved TRP variation
- Supports Uplink Carrier Aggregation in Band 39 (35 MHz)

Description

The SKY77928-21 SkyLiTE[™] Tx-Rx Front-End Module (FEM) offers a complete Power Amplifier (PA) and switching solution for advanced 2G/3G/4G cellular handsets with dual antenna.

Two PAs support quad-band GSM, GPRS, EDGE multi-slot operation and TD-SCDMA and TDD LTE transmission. The low band (LB) PA transmits in the GSM850/900 bands. The mid-band (MB) PA covers DCS1800, PCS1900, TD-SCDMA bands 34/39, and TDD LTE band 39. The FEM facilitates flexible broadband RF switch-through by means of outward switching of the LB/MB PA RF inputs and 16 transmit/receive (TRx) antenna switch ports covering all 3G/4G bands from 700 MHz through 2300-2700 MHz. In support of downlink inter-band Carrier Aggregation (CA), the TRx ports are partitioned into three independent switch blocks comprising 7 LB, 5 MB and 4 HB ports with strong M/H cross-band support. Each switch block includes a directional coupler that may be monitored on the CPL port with selectable forward or reverse directionality. A diplexer and a second antenna port provide flexible simultaneous L+M/HB reception required for downlink CA.

The SKY77928-21 includes a full set of features for state-of-the-art performance and minimal phone board complexity. The Heterojunction Bipolar Transistor (HBT) PA blocks are fabricated in Gallium Arsenide (GaAs). The HBT, switches, controller die, and passive components are mounted on a multi-layer laminate substrate. A plastic overmold encapsulates the entire assembly.

A new multi-standard CMOS controller provides PA band/mode selection and bias control, including the Mobile Industry Processor Interface (MIPI) RFFE logic and switch decoder circuitry. The controller supports selection of the GMSK envelope control technology by either linear RF amplification or analog VRAMP. A distinct MIPI register mapping included in this Data Sheet provides for each of these control paradigms, including associated approaches to PA mode, power output and switch control.

Selecting the linear GMSK operation standard disables VRAMP input, so all PA biasing depends only on MIPI mode selection. The transmitted envelope is then a linear function of RF input. Selecting VRAMP-enabled operation, the PA controller provides VRAMP control of the GMSK envelope and reduces sensitivity to input drive, temperature, power supply, and process variations. Skyworks' Finger-Based Integrated Power Amplifier Control (FB-iPAC) minimizes output power variation into mismatch. In EDGE and TD-SCDMA / TDD LTE linear modes, VRAMP voltage and MIPI-based bias settings jointly optimize PA linearity and efficiency.

Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks *Definition of Green*[™], document number SQ04-0074.

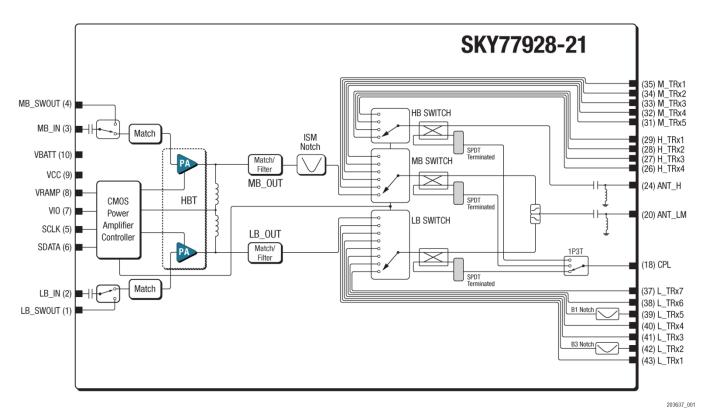


FIGURE 1. SKY77928-21 FUNCTIONAL BLOCK DIAGRAM

Electrical Specifications

The following tables list the electrical specifications of the SKY77928-21 Front-End Module. Table 1 lists the absolute maximum ratings and Table 2 lists the recommended operating conditions. Table 5 through Table 14 provide the electrical specifications of the SKY77928-21 for GMSK, EDGE, TD-SCDMA,

and TDD LTE transmission and TRx port modes including control logic descriptions for the various modes.

The SKY77928-21 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

Table 1. Absolute Maximum Ratings¹

	Parameter	Symbol	Min	Nominal	Max	Unit
Input Power		Pin	_	_	15	dBm
Supply Voltage ≤ 1 µs (n	Supply Voltage \leq 1 μs (measured to GND)		-1.2 ²	_	6	V
		Vcc	-0.5	_	6 ³	
DC Continuous During B	urst ⁴	Іватт	_	_	2.9	А
GMSK Burst Duty Cycle		Dв	_	_	50	%
Voltage Standing Wave Ratio		VSWR	_	_	20:1	V
Power Control Voltage		VRAMP	-0.3	_	3.0	V
MIPI Supply Voltage		VIO	_	_	2.0	V
MIPI Data and Clock Volt	tage	VMIPI	_	_	2.0	V
Temperatures	Operating	TCASE	-30	_	+100	°C
	Storage	Тѕтс	-40	_	+150	
Moisture Sensitivity Level		MSL	_	_	3	
Reflow Solder Temperat	ure (J-STD-020B)	TSOLDER	260	_	_	°C

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit at a time and all other parameters set at or below their nominal value.

Table 2. SKY77928-21 Recommended Operating Conditions¹

Unless otherwise specified: 50 Ω system; terminate all RF ports with 50 Ω during test.

Parameter		Symbol	Min	Typ ²	Max	Unit
Supply Voltage ³	GMSK	VBATT	3.0	3.5	4.6	V
	EDGE/TD-SCDMA/TDD LTE		3.0	3.6	4.6	
		Vcc	3.0		4.6	
GMSK Input Power – VRAMP-Bas	ed Operation	Pin	0	3	6	dBm
Operating Case Temperature ⁴	GMSK/EDGE 1–4 Slots (12.5%–50% duty cycle) ⁵	TCASE	-20	+25	+85	°C
	TD-SCDMA/TDD LTE		-20	+25	+85	

¹ Extreme Test Conditions (ETC) are defined by the applicable min/max values of the parameters.

² Pulsed at -1.2 V for 100 μs.

³ Applies when VCC and VBATT are tied together.

⁴ Applied voltage must be current-limited to specified range.

² Nominal Test Condition (NTC) is defined by the applicable typical values.

³ VBATT and VCC should be connected unless DC/DC is used and VCC can be separately supplied.

⁴ Case Operating Temperature refers to the temperature at the GROUND PAD on the underside of the package.

⁵ Max. output power must be reduced by 6 dB to support 3-slot and 4-slot operation.

Table 3. SKY77928-21 Interface Specifications Unless otherwise specified: ETC per Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
APT Supply Voltage	VBATT		0.5	_	3.4	٧
PA Supply Current (on VBATT)	I BATT		0		2.9	А
GMSK/EDGE Burst Duty Cycle	Dв		12.5	_	50	%
Resistance of Vramp	R_vramp	DC resistance to ground	5	_	_	MΩ
Capacitance of VRAMP	C_vramp	Capacitance to ground	_	_	2	pF
MIPI Supply Voltage	VIO		1.65	1.8	1.95	٧
MIPI Signal Levels	VMIPI_LOW		0		0.2 x VIO	
	VMIPI_HIGH		0.8 x VIO		VIO	
Power Control Voltage	VRAMP	Required for operation up to PRATED	0.2	_	1.6	٧
Standby Current	I_STANDBY	Standby mode NTC VIO = 0 V	_	7	20	μА
TRx Mode Current	I_TRX	Any TRx Mode	_	250	400	μА

Table 4. SKY77928-21 Linear GMSK/EDGE Power Modes -- Recommended Maximum Operating Power Unless otherwise specified, values are used as each Power Mode's Test Condition

Band	Waveform	Power Mode	Prated	Unit
LB	GMSK	High Power Mode (HPM)	33.5	dBm
		Medium Power Mode (MPM)	29.0	
		Low Power Mode (LPM)	23.0	
		Ultra-Low Power Mode (ULPM)	15.0	
	EDGE	Medium Power Mode (MPM)	27.5	
		Low Power Mode (LPM)	22.0	
		Ultra-Low Power Mode (ULPM)	16.0	
НВ	GMSK	High Power Mode (HPM)	31.0	
		Medium Power Mode (MPM)	28.0	
		Low Power Mode (LPM)	24.0	
		Ultra-Low Power Mode (ULPM)	16.0	
	EDGE	Medium Power Mode (MPM)	26.5	
		Low Power Mode (LPM)	22.0	
		Ultra-Low Power Mode (ULPM)	16.0	

Table 5-1. SKY77928-21 ELECTRICAL SPECIFICATIONS – GMSK/EDGE Low Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; POUT = PRATED per "Power Modes" Table 4 at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Operating Frequency Range				824		915	MHz
PSAT	PSAT_GMSK	GMSK HPM	PiN = 9 dBm, NTC	33.7	34.2		dBm
Psat Degraded	PSAT_GMSK_ETC	GMSK HPM	PIN = 9 dBm, ETC	31.5			dBm
Power Added Efficiency, saturated	PAE_GMSK_SAT	GMSK HPM	Pout = Psat, Pin = 9 dBm		36		%
Power Added Efficiency	PAE_GMSK	GMSK HPM			34		
		GMSK MPM			20		
		GMSK LPM			10		
		GMSK ULPM			4		
Gain	GAIN_GMSK	GMSK HPM		28.0	31.0	32.0	dB
		GMSK MPM		28.0	30.5	33.0	
		GMSK LPM		24.0	26.5	29.0	
		GMSK ULPM		14.0	16.5	19.0	
	GAIN_EDGE	EDGE MPM		30.0	32.0	34.0	
		EDGE LPM		27.75	29.5	31.25	
		EDGE ULPM		17.25	19.0	20.75	
Gain Compression		GMSK HPM	Gain(Prated – 10 dB) – Gain(Prated – 1 dB)			1	dB
Gain Change Over Temperature		GMSK HPM	ETC, except VBATT = Vcc = 3.5 V	-2.3		1.3	dB
		GMSK MPM		-2.0		1.2	
		GMSK LPM		-2.4		1.5	
		GMSK ULPM		-2.5		2.5	
Gain Change Over Voltage		GMSK HPM	ETC, except T = 25 °C	-1.0		1.2	dB
		GMSK MPM		-0.5		1.0	
		GMSK LPM		-0.5		1.0	
		GMSK ULPM		-0.5		1.0	
PAE	PAE_EDGE	EDGE MPM			16		%

Table 5-2. SKY77928-21 ELECTRICAL SPECIFICATIONS – GMSK/EDGE Low Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; POUT = PRATED per "Power Modes" Table 4 at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Output Noise Power		ALL	NTC, Rx = 747 MHz to 757 MHz			-84	dBm/100 kHz
			NTC, Rx = 757 MHz to 762 MHz			-84	
			NTC, Rx = 869 MHz to 894 MHz			-84	
			NTC, Rx = 925 MHz to 935 MHz			-80	
			NTC, Rx = 935 MHz to 960 MHz			-83	
			NTC, Rx = 1805 MHz to 1880 MHz			-90	
			NTC, Rx = 1930 MHz to 1990 MHz			-90	
Harmonics	2f0-13f0	GMSK ALL	ETC Pout ≤ Prated			-33	dBm
Input VSWR	VSWR_IN	ALL				2.8:1	
Stability	S	ALL	VSWR <= 12:1			-36	dBm
Ruggedness	Ru	HPM	All Load Phases	15:1			
Switching Transients	SWT_400	GMSK HPM	400 kHz offset			-28	dBm/30kHz
		GMSK MPM	ETC PIN adjusted for Temperature			-28	
		GMSK LPM	aajastoa isi Tompotatano			-28	
		GMSK ULPM				-28	
ACPR	ACPR_200	EDGE MPM	200 kHz offset			-35.5	dBc/30 kHz
(M-ORFS, No Predistortion)		EDGE LPM	ETC except VBATT ≥ 3.2 V Pin adjusted for Temperature			-35.5	
		EDGE ULPM	adjastou isi Tomporataro			-35.5	
	ACPR_400	EDGE MPM	400 kHz offset			-58	
		EDGE LPM	ETC except VBATT ≥ 3.2 V Pin adjusted for Temperature			-58	
		EDGE ULPM				-58	
	ACPR_600	EDGE MPM	600 kHz offset			-65	
		EDGE LPM	ETC except VBATT ≥ 3.2 V PIN adjusted for Temperature			-65	
		EDGE ULPM	,			-65	
EVM (No Predistortion)	EVM_rms	EDGE MPM	ETC except VBATT ≥ 3.2 V		2	4	%
		EDGE LPM	PIN adjusted for Temperature		2	4	
		EDGE ULPM			2	4	

Table 6-1. SKY77928-21 Electrical Specifications – GMSK Low Band (VRAMP-Based Operation)

Unless otherwise specified: PRATED = 33.3 dBm; ETC per Table 2.

			GSM850/900 GMSK Mode				
Parameter		Symbol Conditions		Min	Тур	Max	Unit
Frequency Range	GSM850	f0	_	824	_	849	MHz
	GSM900			880	_	915	
Supply Current		І ВАТТ	_	_	_	2.9	Α
Power Added Efficiency	GSM850	PAE	POUT = PRATED	_	34	_	%
	GSM900		NTC Duty cycle = 1:8	_	34		
Harmonics		2fo to 13fo	$\begin{split} BW &= 3 \text{ MHz} \\ 5 \text{ dBm} &\leq \text{Cal-Pout} \leq \text{Prated} \\ \text{Vramp} &= \text{Cal-Vramp}^1 \end{split}$	_	-40	-33	dBm
Output Power		Pout_max_ntc	NTC, PIN = 0 dBm, VRAMP = 1.65 V	_	34.2	_	dBm
		POUT_MAX_ETC	$V_{BATT} = 3.0 \text{ V},$ $P_{IN} = 0 \text{ dBm},$ $V_{RAMP} = 1.65 \text{ V}$	31	_	_	
Input VSWR		ΓιΝ	Pout ≤ Prated	_	_	2.8:1	
Isolation		ISO_PDSD	$\begin{aligned} \text{Pin} & \leq 6 \text{ dBm} \\ \text{Isolation Mode} \\ \text{VrAMP} & \leq 0.1 \text{ V} \end{aligned}$	_	-60	-51	dBm
		ISO_PESE	NTC, LB GMSK/VRAMP Tx Mode Pin \leq 6 dBm Vramp \leq 0.1 V	_	_	-15	
Mode Switching Time		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE			2	μs

Table 6-2. SKY77928-21 Electrical Specifications – GMSK Low Band (Vramp-Based Operation) *Unless otherwise specified: PRATED = 33.3 dBm; ETC per Table 2.*

		GSM850/900 GMSK Mode				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Stability	S	All combinations of the following parameters: $5 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 12:1, all phase angles	No	parasitic	oscillatio	n > −36 dBm
Load Mismatch	Load	All combinations of the following parameters: $5 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 20:1, all phase angles.	No		damage d legradatio	or permanent on
Noise Power	PNOISE_850	$f_{\rm L}Rx = 869$ MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	dBm
	PNOISE_900	$f_{\rm L}Rx = 935$ MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	
		$f_{\rm L}$ Rx = 925 MHz to 935 MHz Pout = Prated NTC RBW = 100 kHz		_	-79	
		f_Rx =1805 MHz to 1880 MHz Роит = Prated NTC RBW = 100 kHz	_	_	-86	
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz			-83	
	Pnoise_ism	f_Rx = 2400 MHz to 2500 MHz POUT = PRATED NTC RBW = 100 kHz			-106	

¹ Cal-VRAMP = VRAMP at POUT = Cal-POUT, NTC

Table 7-1. SKY77928-21 Electrical Specifications – EDGE Low Band (VRAMP-Based Operation)

Unless otherwise specified: VRAMP = 1.45 V; PRATED = 27.5 dBm; ETC per Table 2.

			GSM850/900 EDGE Mode				
Parameter		Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range	GSM850	f0	_	824	_	849	MHz
	GSM900			880	_	915	
Output Power		Pout_edge	NTC Gain / ACPR / EVM in specification	27.5	_	_	dBm
		Pout_edge_ex	Gain / ACPR / EVM in specification	26.0	_	-	
Gain		G_NOM_850	POUT = PRATED	30.0	31.5	33.0	dB
		G_NOM_900	NTC	30.0	31.5	33.0	
		G_EX_850	POUT = POUT_EDGE,	28.0	_	34.5	
		G_EX_900	POUT_EDGE_EX	28.5	_	34.5	
Power Added Efficiency	GSM850	PAE_GSM850	Pout = Prated NTC	_	16		%
	GSM900	PAE_GSM900	Duty cycle = 1:8	_	16	1	
Harmonics		2fo to 15fo	BW = 3 MHz 5 dBm ≤ Pout ≤ Pout_edge, Pout_edge_ex	_	-45	-36	dBm
Input VSWR		Γιν	Pout ≤ Prated	_	_	2.8:1	
ACPR		ACPR_200	POUT = POUT_EDGE,	_	-37.5	-35.5	dBc
		ACPR_400	Pout_edge_ex Bandwidth = 30 kHz	_	-64.0	-60.0	
		ACPR_600		_	-75.0	-70.0	
EVM		EVM_RMS	POUT = POUT_EDGE, POUT_EDGE_EX	_	_	3.5	%
Bias Switching Time		T_ON_EDGE	Rx to Tx transition time from final MIPI command and 90% VRAMP to 0.5 db RF settling.	_	_	1	μs

Table 7-2. SKY77928-21 Electrical Specifications – EDGE Low Band (VRAMP -Based Operation)

Unless otherwise specified: VRAMP = 1.45 V; PRATED = 27.5 dBm; ETC per Table 2.

		GSM850/900 EDGE Mode				
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Stability	S	All combinations of the following parameters: $5 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 12:1, all phase angles	No	parasitic	oscillatio	n > -36 dBn
Load Mismatch	Load	All combinations of the following parameters: $5 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 20:1, all phase angles.	No		damage d degradatio	or permanent on
Noise Power	PNOISE_850	$f_{\rm L}Rx = 869$ MHz to 894 MHz POUT \leq PRATED NTC RBW = 100 kHz	_		-83	dBm
	PNOISE_900	$f_{\rm L}Rx = 935$ MHz to 960 MHz POUT \leq PRATED NTC RBW = 100 kHz	_	_	-83	
		$f_{\rm L}Rx = 925$ MHz to 935 MHz POUT \leq PRATED NTC RBW = 100 kHz	_	_	-82	
		$f_{\rm L}Rx = 1805$ MHz to 1880 MHz POUT \leq PRATED NTC RBW = 100 kHz	_	_	-86	
	PNOISE_750	$f_{\rm R}$ x = 734 MHz to 757 MHz POUT \leq PRATED NTC RBW = 100 kHz	_	_	-83	
	PNOISE_ISM	$f_{\rm R}$ x = 2400 MHz to 2500 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-106	

Table 8-1. SKY77928-21 Electrical Specifications – GMSK/EDGE Mid-Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; POUT = PRATED per "Power Modes" Table at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Operating Frequency Range				1710		1910	MHz
Psat	PSAT_GMSK	GMSK HPM	PiN = 6 dBm, NTC	31.2	32.0		dBm
Psat Degraded	PSAT_GMSK_ETC	GMSK HPM	Pin = 6 dBm, ETC	29.0			dBm
Power Added Efficiency, saturated	PAE_GMSK_SAT	GMSK HPM	Pout = Psat, Pin = 6 dBm		35		%
Power Added Efficiency	PAE_GMSK	GMSK HPM			32		
		GMSK MPM			22		
		GMSK LPM			16		
		GMSK ULPM			6		
Gain	GAIN_GMSK	GMSK HPM		27.5	30.0	32.5	dB
		GMSK MPM		26.0	28.5	31.0	
		GMSK LPM		23.5	26.0	28.5	
		GMSK ULPM		20.0	22.5	25.0	
	GAIN_EDGE	EDGE MPM		30.25	32.0	33.75	
		EDGE LPM		24.75	26.5	28.25	
		EDGE ULPM		20.75	22.5	24.25	
Gain Compression		GMSK HPM	Gain(Prated – 10 dB) – Gain(Prated – 1 dB)			1.2	dB
Gain Change Over		GMSK HPM	ETC, except VBATT = VCC = 3.5 V	-2.5		1.4	dB
Temperature		GMSK MPM		-2.5		1.5	
		GMSK LPM		-2.4		1.7	
		GMSK ULPM		-2.5		1.8	
Gain Change Over Voltage		GMSK HPM	ETC, except T = 25 °C	-1.2		1.8	dB
		GMSK MPM		-1.0		0.9	
		GMSK LPM		-0.9		1.3	
		GMSK ULPM		-0.8		1.5	1
PAE	PAE_EDGE	EDGE MPM			17		%

Table 8-2. SKY77928-21 ELECTRICAL SPECIFICATIONS – GMSK/EDGE Mid-Band (Linear GMSK Operation)

Unless otherwise specified: Conditions NTC per Table 2; Duty Cycle 25%; POUT = PRATED per "Power Modes" Table at NTC, then varies with gain

Parameter	Symbol	Waveform/ Bias Mode	Condition	Min	Тур	Max	Units
Output Noise Power		ALL	NTC, Rx = 747 MHz to 757 MHz			-93	dBm/100kHz
			NTC, Rx = 757 MHz to 762 MHz			-93	
			NTC, Rx = 869 MHz to 894 MHz			-93	
			NTC, Rx = 925 MHz to 935 MHz			-90	
			NTC, Rx = 935 MHz to 960 MHz			-90	
			NTC, Rx = 1805 MHz to 1880 MHz			-81	
			NTC, Rx = 1930 MHz to 1990 MHz			-82	
Harmonics	2f0-13f0	GMSK ALL	ETC, Pout <= Prated			-33	dBm
Input VSWR	VSWR_IN	ALL				3:1	
Stability	S	ALL	VSWR <= 12:1			-36	dBm
Ruggedness	Ru	HPM	All Load Phases	15:1			
Switching Transients	SWT_400	GMSK HPM	400 kHz offset			-28	dBm/30kHz
		GMSK MPM	ETC PIN adjusted for Temperature			-28	
		GMSK LPM	The adjusted for Foreportunity			-28	-
		GMSK ULPM				-28	
ACPR	ACPR_200	EDGE MPM	200 kHz offset			-35.5	dBc/30kHz
(M-ORFS, no pre-distortion)		EDGE LPM	ETC except VBATT ≥ 3.2 V PIN adjusted for Temperature			-35.5	
		EDGE ULPM	The adjusted for Fortigoratare			-35.5	
	ACPR_400	EDGE MPM	400 kHz offset			-58	
		EDGE LPM	ETC except VBATT ≥ 3.2 V PIN adjusted for Temperature			-58	
		EDGE ULPM	The adjusted for Foriporatare			-58	
	ACPR_600	EDGE MPM	600 kHz offset			-65	
		EDGE LPM	ETC except VBATT ≥ 3.2 V PIN adjusted for Temperature			-65	
		EDGE ULPM	i magacica for remperature			-65	
EVM	EVM_RMS	EDGE MPM	ETC except VBATT ≥ 3.2 V		2	4	%
(no pre–distortion)		EDGE LPM	Pin adjusted for Temperature		2	4	
		EDGE ULPM			2	4	

Table 9-1. SKY77928-21 Electrical Specifications – GMSK Mid-Band (VRAMP-Based Operation)

Unless otherwise specified: PRATED = 30.8 dBm; ETC per Table 2.

GSM1800/1900 GMSK Mode										
Paramet	er	Symbol	Conditions	Min	Тур	Max	Unit			
Frequency Range	DCS1800	f0	_	1710	_	1785	MHz			
	PCS1900		_	1850	_	1910				
Power Added Efficience	су	PAE_DCS1800	POUT = PRATED NTC	_	34	_	%			
		PAE_PCS1900	Duty cycle = 1:8	_	34	_				
Harmonics		2f0 to 7f0	$\begin{split} BW &= 3 \text{ MHz} \\ 0 \text{ dBm} &\leq \text{Cal-Pout} \leq \text{Prated} \\ \text{Vramp} &= \text{Cal-Vramp}^1 \end{split}$	_	-40	-33	dBm			
Output Power		Pout_max_ntc	NTC PIN = 0 dBm VRAMP = 1.65 V	_	31.8	_	dBm			
		POUT_MAX_ETC	$\begin{split} \text{VBATT} &= 3.0 \text{ V} \\ \text{PIN} &= 0 \text{ dBm} \\ \text{VRAMP} &= 1.65 \text{ V} \end{split}$	28.8	_	_				
Input VSWR		Гім	Pout ≤ Prated	_	_	3:1				
Isolation		ISO_PDSD	$\begin{aligned} \text{Pin} &\leq 6 \text{ dBm} \\ \text{Isolation Mode} \\ \text{Vramp} &\leq 0.1 \text{ V} \end{aligned}$	_	-60	-51	dBm			
		ISO_PESE	NTC HB GMSK/Vramp Tx Mode PIN \leq 6 dBm Vramp \leq 0.1 V	_	_	-15				
Mode Switching Time T_MOD		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE	_		2	μs			

Table 9-2. SKY77928-21 Electrical Specifications – GMSK Mid-Band (VRAMP-Based Operation)

Unless otherwise specified: PRATED = 31.0 dBm; ETC per Table 2.

GSM1800/1900 GMSK Mode										
Parameter	Symbol	Conditions	Min	Тур	Max	Unit				
Stability	parasitic	asitic oscillation >-36 dBm								
Load Mismatch	Load	All combinations of the following parameters: $0 \text{ dBm} \leq \text{Pout} \leq \text{Prated}$ Load VSWR = 20:1, all phase angles.	No module damage or permanen degradation							
Noise Power	PNOISE_1800	$f_{\rm RX}$ = 1805 MHz to 1880 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-81	dBm				
		$f_{\rm RX} = 925$ MHz to 960 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-84					
	PNOISE_1900	$f_{\rm L}Rx = 1930$ MHz to 1990 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-81					
		$f_{\rm L}$ Rx = 869 MHz to 894 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-84					
	PNOISE_750	$f_{\rm L}$ Rx = 734 MHz to 757 MHz POUT \leq PRATED NTC RBW = 100 kHz	_	_	-83					
	PNOISE_ISM	$f_{\rm L}Rx = 2450$ MHz to 2500 MHz Pout \leq Prated NTC RBW = 100 kHz	_	_	-106					

¹ Cal-VRAMP = VRAMP at POUT = Cal-POUT, NTC

Table 10-1. SKY77928-21 Electrical Specifications – EDGE Mid-Band (VRAMP-Based Operation)

Unless otherwise specified: VRAMP = 1.55 V; PRATED = 26.5 dBm; ETC per Table 2.

GSM1800/1900 EDGE Mode										
Parameter	Symbol	Conditions	Min	Тур	Max	Unit				
Frequency Range DCS	S1800 fo	_	1710	_	1785	MHz				
PCS	S1900		1850	_	1916					
Output Power	Pout_edge	NTC Gain / ACPR / EVM / in specification	26.5	_	_	dBm				
	Pout_edge_ex	Gain / ACPR / EVM / in specification	25.0		_					
Gain	G_NOM_1800	Pout = Prated	30.0	32.0	34.0	dB				
	G_NOM_1900	NTC	30.5	32.5	34.5					
	G_EX_1800	Pout = Pout_edge,	28.0	_	35.0					
	G_EX_1900	POUT_EDGE_EX	27.5	_	36.0					
Power Added Efficiency	PAE_DCS1800	VBATT = 3.6 V POUT = PRATED	_	17	_	%				
	PAE_PCS1900	NTC Duty cycle = 1:8	_	17						
Harmonics	2f0 to 7f0	$BW = 3 \text{ MHz}$ $0 \text{ dBm} \leq \text{Pout} \leq \text{Pout_edge}, \text{Pout_edge_ex}$	-	-45	-36	dBm				
Input VSWR	Гім	Pout ≤ Prated	_	_	3:1					
ACPR	ACPR_200	Pout = Pout_edge,	_	-37.5	-35.5	dBc				
	ACPR_400	Pout_edge_ex Bandwidth = 30 kHz	_	-64.0	-59.0					
	ACPR_600	Dandwiddi — 50 Miz	_	-75.0	-70.0					
EVM	EVM_RMS	Pout = Pout_edge, Pout_edge_ex		_	3.5	%				
Mode Switching Time	T_ON_EDGE	Rx to Tx transition time from final MIPI command and 90% VRAMP to 0.5 dB RF settling	_	_	1	μs				

Unit

Table 10-2. SKY77928-21 Electrical Specifications - EDGE Mid-Band (VRAMP-Based Operation) Unless otherwise specified: VRAMP = 1.55 V; PRATED = 26.5 dBm; ETC per Table 2.

GSM1800/1900 **EDGE Mode Parameter** Symbol **Conditions** Min Typ Max All combinations of the following parameters: S No parasitic oscillation >-36 dBm Stability $0 \text{ dBm} \leq P_{\text{OUT}} \leq P_{\text{RATED}}$

Table 11. SKY77928-21 Electrical Specifications – TD-SCDMA Band 39

Unless otherwise specified: MPM (Linear GMSK/EDGE Operation); VRAMP = 1.6 V (VRAMP-Based Operation); ETC per Table 2.

TD-SCDMA Band 39 (1880–1920 MHz)										
Paramet	ers	Symbol	Condition	Min	Тур	Max	Unit			
Output Power		POUT_TD_NOM	NTC	24.5	_	_	dBm			
		POUT_TD_EX		23.5						
Gain	High Power	Gмрм_тд_nom	POUT = POUT_TD_NOM	29.75	31.5	33.25	dB			
		G мРм_EX	POUT = POUT_TD_EX	26.5		34.0				
Ult	ra-Low Power	GULPM	Pout = -5 dBm ULPM or Vramp = 0.17 V	_	14.0	18.5				
Power Added Efficien	су	РАЕмрм	ULPM or VRAMP = 0.17 V POUT = POUT_TD_NOM — 12				%			
Low Power Mode Current		IBATT_LPM	Vramp = 0.17 V Pout = 0 dBm NTC		55		mA			
	1.6 MHz offset	ACLR1.6	POUT_TD_NOM		-47	-42	dBc			
			POUT_TD_EX	_	_	-38				
	3.2 MHz offset	ACLR3.2	POUT_TD_NOM, POUT_TD_EX	_	-64	-60				
Error Vector Magnitud	de ¹	EVM_RMS	POUT_TD_NOM	_	2	3	%			
			Pout_td_ex	_	_	3				
Spectral Emissions M	largin	SEM1-SEM3	Pout = Pout_td_nom Margin to ETSI SEM mask	5			dB			
Harmonic Suppressio	n ¹	f02-f06	$POUT \le POUT_TD_NOM$, $POUT_TD_EX$, $RBW = 1$ MHz	_	_	-36	dBm			
Tx Noise in Rx Bands ¹ DCS Rx			f _Rx = 1805 MHz to 1850 MHz, POUT = POUT_TD_NOM NTC, RBW = 100 kHz	_	_	-81	dBm			
Input Voltage Standin	g Wave Ratio	VSWR_IN		_	_	3:1	_			
Rise / Fall Time		TonDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling	_	_	10	μs			
		ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop		_	10				
Stability		S	VSWR = 12:1 All phases, RBW = 1 MHz		_	-36	dBm			
Ruggedness - no dan	nage	Ru	All phases, time = 10 seconds	20:1	_	_				

¹ Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 12. SKY77928-21 Electrical Specifications – TD-SCDMA Band 34

Unless otherwise specified: MPM (Linear GMSK/EDGE Operation); VRAMP = 1.6 V (VRAMP-Based Operation); ETC per Table 2.

TD-SCDMA Band 34 (2010–2025 MHz)										
Parameters	Symbol	Condition	Min	Тур	Max	Unit				
Output Power	POUT_TD_NOM	NTC	24.5	_	_	dBm				
	POUT_TD_EX		23.5	_	_					
Gain High Pow	r Gмрм_то_noм	POUT = POUT_TD_NOM	29.0	31.0	33.0	dB				
	G мРм_EX	POUT = POUT_TD_EX	25.0	_	35.0					
Ultra-Low Powe	GULPM	POUT = -5 dBm ULPM or VRAMP = 0.17 V	_	13.0	17.0					
Power Added Efficiency	РАЕмрм	POUT = POUT_TD_NOM	_	12	_	%				
Low Power Mode Current	IBATT_LPM	VRAMP = 0.17 V POUT = 0 dBm NTC		55		mA				
Adjacent Channel 1.6 MHz Leakage power Ratio ¹ offset	ACLR1.6	POUT_TD_NOM	_	-44	-40	dBc				
		POUT_TD_EX	_	_	-38					
3.2 MHz offset	ACLR3.2	POUT_TD_NOM, POUT_TD_EX	_	-62	-58					
Error Vector Magnitude ¹	EVM_RMS	POUT_TD_NOM	_	2	3	%				
		POUT_TD_EX	_	_	3					
Spectral Emissions Margin	SEM1-SEM3	Pout = Pout_td_nom Margin to ETSI SEM mask	5			dB				
Harmonic Suppression ¹	f02-f06	$POUT \le POUT_TD_NOM$, $POUT_TD_EX$, $RBW = 1$ MHz	_	_	-36	dBm				
Tx Noise in Rx Bands ¹ DCS Rx		f _Rx = 1805 MHz to 1880 MHz, POUT = POUT_TD_NOM NTC, RBW = 100 kHz	_	_	-81	dBm				
Input Voltage Standing Wave Ratio	VSWR_IN	-	_	_	3:1	_				
Rise / Fall Time	TonDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling	_		10	μѕ				
	ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop			10					
Stability	S	VSWR = 12:1 All phases, RBW = 1 MHz	_	_	-36	dBm				
Ruggedness - no damage	Ru	All phases, time = 10 seconds	20:1	-	-					

¹ Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 13. SKY77928-21 Electrical Specifications – TDD LTE Band 39

Unless otherwise specified: MPM (Linear GMSK/EDGE Operation); VRAMP = 1.2 V (VRAMP-Based Operation); ETC per Table 2.

TDD LTE Band 39 (1880–1920 MHz)										
Parameter	'S	Symbol	Condition	Min	Тур	Max	Unit			
Output Power ¹		POUT_TDLTE_NOM	NTC	25.0	_	_	dBm			
		POUT_TDLTE_EX		24.0	_	_				
Gain ¹	High Power	GMPM_TDLTE_NOM	POUT = POUT_TDLTE_NOM	28.0	29.0	32.0	dB			
		GMPM_TDLTE_EX	POUT = POUT_TDLTE_EX	25.5	_	33.5				
Ultra	a-Low Power	GULPM	Pout = -5 dBm ULPM or VRAMP = 0.19 V	_	15.0	18.5				
Power Added Efficiency	1	РАЕмрм	POUT = POUT_TDLTE_NOM	_	13		%			
Low Power Mode Curre	nt	İBATT_LPM	ULPM or Vramp = 0.19 V Pout = 0 dBm NTC		58		mA			
Adjacent Channel Leaka	age power	EUTRA_ACLR1	POUT = POUT_TDLTE_NOM	_	-42	_	dBc			
Ratio ¹			POUT = POUT_TDLTE_EX	_	_	-36				
		UTRA_ACLR1	POUT = POUT_TDLTE_NOM	_	-42	_				
			POUT = POUT_TDLTE_EX	_	_	-38				
		UTRA_ACLR2	POUT = POUT_TDLTE_NOM	_	-48	_				
			POUT = POUT_TDLTE_EX	_	_	-42				
Error Vector Magnitude ¹		EVM_RMS	POUT = POUT_TDLTE_NOM	_	2	3	%			
			POUT = POUT_TDLTE_EX	_		3				
Spectral Emissions Mar	gin	SEM1-SEM9	Pout = Pout_tdlte_nom Margin to ETSI SEM mask				dB			
Harmonic Suppression ²	Second	f02	POUT ≤ POUT_TDLTE_NOM, POUT_TDLTE_EX,	_	_	-36	dBm			
	Third	f03	RBW = 1 MHz	_	_	-46				
Tx Noise in Rx Bands ³	ISM Band	PNOISE_TDLTE_ISM	$f_{\rm RX}$ = 2450 to 2500 MHz, POUT = POUT_TDLTE_NOM - MPR, NTC, RBW = 100 kHz	_	_	-106	dBm			
	Band 34 Rx	PNOISE_TDLTE_B34	$f_{\rm RX} = 2010$ to 2025 MHz, POUT = POUT_TDLTE_NOM - MPR, NTC, RBW = 100 kHz		_	-75				
Input Voltage Standing Wave Ratio		VSWR_IN	-	_	_	3:1	_			
Rise / Fall Time		TONDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling	_	_	10	μѕ			
		ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop	_	_	10				
Stability		S	VSWR = 12:1 All phases, RBW = 1 MHz	_		-36	dBm			
Ruggedness - no dama	ge	Ru	All phases, time = 10 seconds	20:1	_	_				

¹ Performance is measured using UL reference measurement channel, 10 MHz. QPSK, 12RB, per ETSI TS 136.101 (Release 12, section A.2.3.2.1-4a).

² Harmonic suppression is measured using UL reference measurement channel, 1.4 MHz, QPSK, 1RB, per ETSI TS 136.01 (Release 12, section A.2.3.2.1-1).

³ Noise is measured using UL reference measurement channel, 20 MHz, QPSK, 100 RB, per ETSI TS 136.101 (Release 12, section A.2.3.1.1)

Table 14-1. SKY77928-21 Electrical Specifications – TRx Ports

**Inless otherwise specified: any TRx Mode: Tested CW: FTC per Table 2.

Unless otherwise specified: any TRx Mode; Tested CW; ETC per Table 2. Ports L_TRx1 to L_TRx7, Ports M TRx1 to M TRx5, Ports H_TRx1 to H_TRx4 Parameter **Symbol Conditions** Min Тур Max Unit 2690 MHz Frequency Range 699 $f_{ m TRx}$ Insertion Loss 1.10 1.40 dB Rx_{IL_LLB} 699 MHz to 850 MHz, NTC, L_TRx1-L_TRx7 1.25 RX IL ULB 850 MHz to 960 MHz, NTC, L_TRx1-L_TRx7 1.55 1.40 1.70 1400 MHz to 1700 MHz, NTC, M_TRx1-M_TRx5 Rx_{IL_LMB} 1.10 1.40 RX IL UMB 1710 MHz to 2400 MHz, NTC, M_TRx1-M_TRx5 1.20 1.50 Rx_{IL} 2500 MHz to 2700 MHz, NTC, M_TRx1-M_TRx5 0.50 0.75 Rx_il_lhb 1400 MHz to 1700 MHz, NTC, H_TRx1-H_TRx4 0.55 0.80 Rx_il_mhb 1710 MHz to 2170 MHz, NTC, H_TRx1-H_TRx4 0.65 0.90 2300 MHz to 2690 MHz NTC, H_TRx1 to H_TRx4 Rx_{IL} TRx Mode VSWR1 1.5:1 **VSWR** VSWR TRX NTC, Applies where insertion loss is specified Active-to-Inactive Active TRx port 699 MHz to 960 MHz (two L_TRx) 30 dΒ ISO_ADJ_TRx_LB TRx Isolation to any adjacent 1710 MHz to 2170 MHz (two M_TRx) 25 ISO_ADJ_TRx_MB inactive TRx port ISO ADJ TRX HB 2300 MHz to 2690 MHz (two H TRx) 20 Active TRx port 699 MHz to 960 MHz (two L_TRx) 35 ISO_NADJ_TRx_LB to any non-ISO_NADJ_TRX_MB 1710 MHz to 2170 MHz (any two M_TRx) 30 adjacent inactive TRx port ISO_NADJ_TRX_HB 2300 MHz to 2690 MHz (any two H TRx) 25 LB-MB Cross-switch Isolation² 20 22 dΒ ISO_CA_TRX_LB 699 MHz to 960 MHz 1400 MHz to 1700MHz 15 16 ISO_CA_TRX_MB 30 1710 MHz to 2170 MHz 25 38¹⁰ 41 1805 MHz to 1830 MHz (B3 Rx)3 41¹⁰ 45 2110 MHz to 2148 Mhz (B4 Rx)4 30 35 2300 MHz to 2690 MHz ISO_CA_TRx_HB LB-HB Cross-switch Isolation⁵ ISO CA TRX LH 699 MHz to 960 MHz and 1710 MHz to 2690 MHz 40 dΒ MB-HB Cross-switch Isolation⁶ 26 dΒ ISO_CA_TRx_MH 1710 MHz to 2690 MHz NTC -75 dBm TRx Harmonics LB TRx_2f0 TRx_3f0 50 ohm M/HB -55 $P_{IN_TRx} = +26 \text{ dBm}$ LB -70 TRx_2f0 NTC. VSWR 5:1 at ANT port TRx_3f0 M/HB -50 $P_{IN_TRx} = +26 \text{ dBm}$ Band 13 2nd Harmonic in GPS Band TRx_2fo_B13 $P_{IN_TRx} = 25 \text{ dBm at } 787 \text{ MHz}, NTC$ -85 dRm Band 8 2nd Harmonic in Band 3 TRx2 2xB8 PIN = 25 dBm-115

L_TRx2 only NTC

Table 14-2. SKY77928-21 Electrical Specifications – TRx Ports

Unless otherwise specified: any TRx Mode; Tested CW; ETC per Table 2.

Ports L_TRx1 to L_TRx7,
Ports M_TRx1 to M_TRx5,
Ports H_TRx1 to H_TRx4

Ports H_TRx1 to H_TRx4										
Parameter	Symbol	Conditions	Min	Тур	Max	Unit				
Band 12/17 3rd Harmonic in Band 1	TRx5_3xB12	Pin = 25 dBm L_TRx5 only NTC		-125						
2nd Order Intermodulation Distortion $f_{\rm IMD2} = f_{\rm TX} \pm f_{\rm blocker} $	IMD2	Tx Output Power = $+20$ dBm Blocker Power = -15 dBm NTC TRx port duplexer termination VSWR 10:1 at $f_{\rm BLOCKER}$, all phases			-105	dBm				
3rd Order Intermodulation Distortion $f_{\rm LIMD3} = 2f_{\rm LTX} - f_{\rm Lblocker}$	IMD3	Tx Output Power = $+20 \text{ dBm}$ Blocker Power = -15 dBm NTC TRx port duplexer termination VSWR 10:1 at $f_{_BLOCKER}$, all phases			-105	dBm				
Band 7 IMD w/ WiFi	IMD3_B7	P_TRx = +24 dBm at 2550 MHz P_blocker = +2 dBm at 2430 MHz NTC H_TRx1 to H_TRx4		-95	-88	dBm				
Leakage from Tx to TRx Ports	P_TxTRx	Any TX Mode			0	dBm				
Coupling Factor in TRx Mode ⁷	CPL_TRx_LB	699 to 960 MHz, L_TRx ports only NTC		-22		dB				
	CPL_TRx_MB	1710 to 2025 MHz, M_TRx and H_TRx ports only NTC		-22						
	CPL_TRx_HB	2300 to 2690 MHz, M_TRx and H_TRx ports only NTC		-22						
Coupling Factor Variation over Output VSWR ⁶	CPL_SWR_TRx_LB	699 to 960 MHz, L_TRx ports only VSWR 2.5:1 at ANT port	-0.5		0.5	dB				
	CPL_SWR_TRx_MB	1710 to 2025 MHz, M_TRx and H_TRx ports only VSWR 2.5:1 at ANT port	-1.3		1.3					
	CPL_SWR_TRx_HB	2300 to 2690 MHz, M_TRx and H_TRx ports only VSWR 2.5:1 at ANT port	-0.5		0.5					
Coupling Factor Variation over	CPL_TV_TRx_LB	699 to 960 MHz, L_TRx ports only	-0.5		0.5	dB				
Temperature ^{8,9}	CPL_TV_TRx_MB	1710 to 2025 MHz, M_TRx and H_TRx ports only	-1.0		1.0					
	CPL_TV_TRx_HB	2300 to 2690 MHz, M_TRx and H_TRx ports only	-1.0		1.0					
Turn-on Time	T_ON_VBATT	From 50% VBATT and VIO to 0.5 dB RF settling			20	us				
TRx-to-TRx Switch Speed	T_TRXTRX	From MIPI command to 0.5 dB RF settling		2	5	us				

¹ Based on the worst of TRx and ANT port reflection coefficients.

² Any active L_TRx1-7 port to any active M_TRx1-5 port.

³ Only for L_TRx2. For other ports spec = 30 Min, 32 Typ.

⁴ Only for L_TRx5. For other ports spec = 33.5 Min, 38 Typ.

⁵ Any active L_TRx1-7 port to any active H_TRx1-4 port.

⁶ Any active M_TRx1-5 port to any active H_TRx1-4 port.

 $^{^{7}}$ Defined as the ratio of CPL port to ANT port output power, driven from TRx.

 $^{^{\}it 8}$ $\,$ Variation with respect to 50 ohm reference, forward direction only.

⁹ Variation with respect to NTC, forward direction only.

¹⁰ Min represents worst case data across all MHTRx ports and frequencies. Selective MHTRx ports provide better isolation.

Table 15. SKY77927-21 Electrical Specifications—Input Switch

Unless otherwise specified: any TRx Mode; Tested CW; ETC per Table 2.

Ports LB_SWOUT and MB_SWOUT										
Parameter Symbol Conditions Min Typ Max Uni										
Frequency Range	$f_{ extsf{LINSW}}$		600		2025	MHz				
Insertion Loss	LBSW0UT_IL	600 MHz to 915 MHz, NTC, LB_SWOUT		0.6	0.9	dB				
	MBSW0UT_IL	1710 MHz to 2025 MHz, NTC, MB_SWOUT	·	1.25	1.55					

MIPI RFFE Information

Table 16. SKY77928-21 MIPI RFFE Register Map (Linear GMSK Power Control only)

	table 16: 6K17725 21 mm 1 m 2 hogister map (2 mod 1 dmok 1											
Bit Position	Description	Trigger Support	R/W	Default	Notes							
	Register 0, Address 0x00 (Mode Control)											
[7]	Register Map & Power Control Selector	Trigger0	R/W	0	(set to 0 to select this Linear GMSK Power Control register map)							
[6:3]	PA Bias Mode Control			0000	0000 = Low Band EDGE							
					0001 = High Band EDGE 0101 = B39 TDD LTE							
					0010 = Low Band GMSK							
					0011 = High Band GMSK							
[2]	PA Enable			0	0 = PA Tx Disabled 1 = PA Tx Enabled							
[1:0]	Power Range Mode			00	00 = High Power Mode (HPM)							
					01 = Mid Power Mode (MPM)							
					10 = Low Power Mode (LPM)							
					11 = Ultra-Low Power Mode (ULPM)							
				Register	1, Address 0x01 (RESERVED)							
[7:0]	RESERVED	Trigger0	R/W	00000000	RESERVED							
				Re	egister 4, Address 0x04							
[7:6]	Input Switch Control	Trigger0	R/W	00	01 = LB Switch Out 11 = HB Switch Out 00 = Switch Off							

Table 17. SKY77928-21 MIPI RFFE Register Map (VRAMP-Based Operation only)

Bit Position	Description	Trigger Support	R/W	Default	Notes							
	Register 0, Address 0x00 (PA Control)											
[7]	Register Map and Power Control Selector	Trigger0	R/W	0	(set to 1 to select this VRAMP	(set to 1 to select this VRAMP GMSK Power Control register map)						
[6]	Reserved			0	Reserved; (set to zero)							
[5]	Gain Control (linear)			0	0 = nominal gain	1 = reduced gain						
[4:0]	TxFEM Mode Control			00000	0x00 = PA off	0x0B = LB EDGE/Linear Tx	0x0F = HB EDGE/Linear Tx					
					0x0A = LB GMSK/Vramp Tx	0x0E = HB GMSK/Vramp Tx	Other = Reserved (Do Not Use)					
Register 1, Address 0x01 (BIAS_CTRL)												
[7:4]	PA Stage 3 Bias	Trigger0	R/W	0000	0000 = 250 μΑ	0110 = 1750 μΑ	1100 = 3250 μA					
	(DAC3)				$0001 = 500 \mu\text{A}$	$0111 = 2000 \mu\text{A}$	1101 = 3500 μA					
					$0010 = 750 \mu\text{A}$	$1000 = 2250 \mu\text{A}$	1110 = 3750 μA					
					0011 = 1000 μA	$1001 = 2500 \mu\text{A}$	1111 = 4000 μA					
					0100 = 1250 μΑ	$1010 = 2750 \mu\text{A}$						
					0101 = 1500 μA	$1011 = 3000 \mu\text{A}$						
[3:0]	PA Stage 1-2 Bias			0000	0000 = 250 μΑ	0110 = 1750 μΑ	1100 = 3250 μA					
	(DAC12)				$0001 = 500 \mu\text{A}$	$0111 = 2000 \mu\text{A}$	1101 = 3500 μA					
					0010 = 750 μΑ	$1000 = 2250 \mu\text{A}$	1110 = 3750 μA					
					0011 = 1000 μA	$1001 = 2500 \mu\text{A}$	1111 = 4000 μA					
					0100 = 1250 μA	1010 = 2750 μA						
					0101 = 1500 μΑ	1011 = 3000 μA						

Table 18-1. SKY77928-21 MIPI RFFE Register Map (Common Registers)

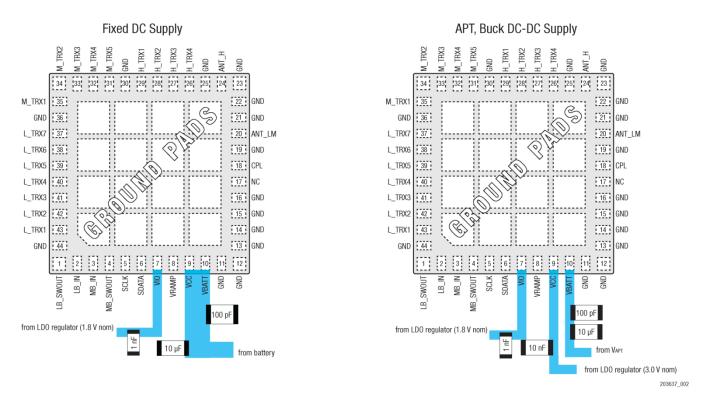
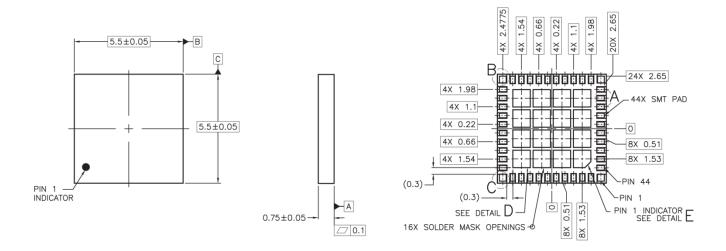
Bit Position	Description	Trigger Support	R/W	Default Value		No	ites				
				Register 2	2, Address 0x02 (ASM	_CTRL)					
[7:4]	(RESERVED)	Trigger0	R/W	0000	Reserved (set to all zer	oes)					
[3:0]	LB Switch Control		R/W	0000	0000 = Standby	0011 = L_TRx3	3 0110) = L_TRx6			
					$0001 = L_TRx1$	$0100 = L_TRx^2$	4 0111	$= L_TRx7$			
					$0010 = L_TRx2$	$0101 = L_TRx5$	5 1111	= LB PA Out			
							Othe	r = isolation			
	Register 3, Address 0x03 (ASM_CTRL2)										
[7:5]	HB Switch Control	Trigger0	R/W	000	000 = Standby	010 = H_TRx2	100	= H_TRx4			
					001 = H_TRx1	$011 = H_TRx3$	Othe	r = isolation			
[4:0]	(RESERVED)			00000	(Reserved; set to zero)						
				Register	4, Address 0x04 (CPL_	CTRL)					
[7:5]	(RESERVED)	Trigger0		000	(Reserved; set to zero)						
[4:3]	Coupler Mode		R/W	00	00 = Standby	10 = MB Coupl	ler ON				
					01 = LB Coupler ON	11 = HB Couple	er ON				
[2]	Coupler Directionality		R/W	0	0 = Forward	1 = Reverse					
[1:0]	Coupler Termination		R/W	00	00 = Termination A	01 = Termination B	10 = Termination C	11 = Termination D			
				Register 5	, Address 0x05 (ASM_	CTRL3)					
[7:4]	(RESERVED)		R/W	0x00	Reserved (set to zero)						
[3:0]	MB Switch Control			0000	0000 = Standby	0011 = M_TRx	3 1111	= MB PA Out			
					$0001 = M_TRx1$	$0100 = M_{\text{TRx}}$	4				
					$0010 = M_TRx2$	$0101 = M_{TRX}$	5 Othe	r = isolation			

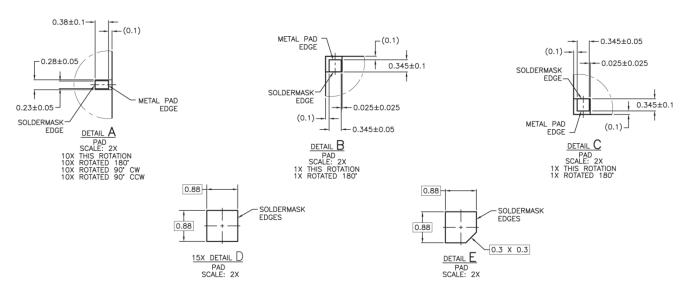
Table 19-2. SKY77928-21 MIPI RFFE Register Map (Common Registers)

Bit Position	Description	Trigger Support	R/W	Default Value	Notes				
Register 27, Address 0x1B (GROUP_ID)									
7:4	(RESERVED)	No	R/W	0000	(Reserved)				
3:0	Group SID			0000	Group slave ID				
	Register 28, Address 0x1C (PM_TRIG)								
7:6	PWR_MODE	No	R/W	10	00 = Normal Operation (ACTIVE)				
	(See Note)				01 = Default Register Settings				
					10 = Low Power (LOW POWER)				
					11 = Reserved				
5	Trigger Mask 2			0	Trigger Enable: 0, Trigger Disable: 1				
4	Trigger Mask 1			0	Trigger Enable: 0, Trigger Disable: 1				
3	Trigger Mask 0			0	Trigger Enable: 0, Trigger Disable: 1				
2	Trigger Register 2			0	Not supported				
1	Trigger Register 1			0	(Reserved)				
0	Trigger Register 0			0	1 = Latch Triggered Register Contents				
				Register	29, Address 0x1D (PROD_ID)				
7:0	Product ID	No	R	0x9B	Product ID				
				Register	30, Address 0x1E (MAN_ID)				
7:0	Manufacturer ID	No	R	0xA5	Manufacturer ID [7:0]				
				Registe	er 31, Address 0x1F (USID)				
7:6	(RESERVED)	No	R/W	00	(Reserved)				
5:4	Manufacturer ID (MSB)		R	01	Manufacturer ID [9:8]				
3:0	User ID		R/W	1110	USID				
				Register 32	, Address 0x20 (EXT_PROD_ID)				
7:0	EXT_PROD_ID	No	R	0x00					
				Register	35, Address 0x23 (UDR_RST)				
7	SOFTWARE_RESET	No	R/W	0					
6:0	(RESERVED)			0000000	Reserved (set to zero)				
				Register	36, Address 0x24 (ERR_SUM)				
7	RESERVED	No	R/W	0	Reserved				
6	COMMAND_FRAME_ PARITY_ERR			0	Command Sequence received with parity error – discard command. The RFFE_STATUS register shall reset after it is read.				
5	COMMAND_LENGTH_ ERR			0	Command length error. The RFFE_STATUS register shall reset after it is read.				
4	ADDRESS_FRAME_ PARITY_ERR			0	Address frame with parity error. The RFFE_STATUS register shall reset after it is read.				
3	DATA_FRAME_PARITY _ERR			0	Data frame with parity error. The RFFE_STATUS register shall reset after it is read.				
2	READ_UNUSED_REG			0	Read command to an invalid address. The RFFE_STATUS register shall reset after it is read.				
1	WRITE_UNUSED_REG			0	Write command to an invalid address. The RFFE_STATUS register shall reset after it is read.				
0	BID_GID_ERR			0	Read command with a BROADCAST_ID or GROUP_ID. The RFFE_STATUS register shall reset after it is read.				

NOTE: When an RFFE Slave is initially powered up and comes out of reset, it enters LOW POWER. During LOW POWER, the device will be in Standby mode.

Technical Information


FIGURE 2. SKY77928-21 APPLICATION SCHEMATIC

Package Dimensions

The SKY77928-21 quad-band front-end module is a 5.5 mm x 5.5 mm x 0.75 mm, 44-pad, leadless package, Figure 3 is a threeview mechanical drawing of the pad configuration with layout

dimensions. Figure 4 provides a recommended PCB layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.

NOTES: UNLESS OTHERWISE SPECIFIED.

- 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5M-1994
- DIMENSIONS ARE IN MILLIMETERS
 PAD DEFINITIONS PER DETAILS ON DRAWING.

PAD DEFINITIONS PER DETAILS ON DIKAWING.
 DWG REFLECTS CUSTOMER REQUESTED DIMENSIONING.

DS-D424-77920 REV1 02/03/15 203637 003

FIGURE 3. DIMENSIONAL DIAGRAM FOR 5.5 mm x 5.5 mm x 0.75 mm, 44-PAD LEADLESS PACKAGE - SKY77928-21 (ALL VIEWS)

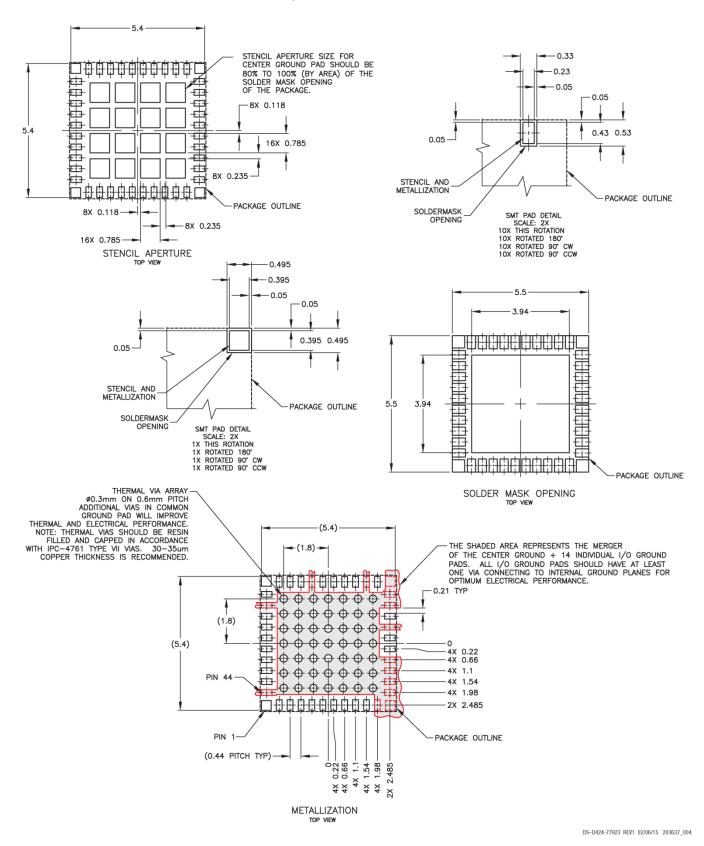
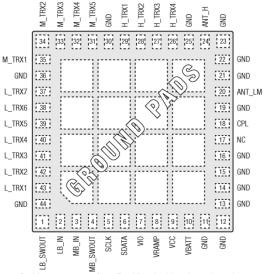



FIGURE 4. PCB LAYOUT FOR 5.5 mm x 5.5 mm, 44-PAD LEADLESS PACKAGE - SKY77928-21 SPECIFIC

Package Description

Figure 5 shows the device pad configuration and the pad numbering convention, which starts with pad 1 in the lower left

Pad layout as seen from Top View looking through package.

203637_005

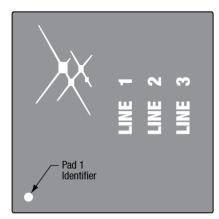

FIGURE 5. SKY77928-21 PAD CONFIGURATION (TOP VIEW)

Table 20. SKY77928-21 Signal Descriptions

Pad ¹	Name	Description
1	LB_SWOUT	Alternate RF output path for LB_IN
2	LB_IN	RF input to LB PA or LB_SWOUT
3	MB_IN	RF input to MB PA or MB_SWOUT
4	MB_SWOUT	Alternate RF output path for MB_IN
5	SCLK	MIPI clock
6	SDATA	MIPI serial data
7	VIO	MIPI supply voltage
8	VRAMP	Controls GMSK power; EDGE, TD-SCDMA, TDD LTE bias
9	VCC	Output switch supply voltage
10	VBATT	PA supply voltage
17	NC	No connection
18	CPL	Directional coupler RF output
20	ANT_LM	RF output to antenna
24	ANT_H	RF output to antenna
26–29	H_TRx4H_TRx1	HB TRx Switch ports
31–35	M_TRx5M_TRx1	MB TRx Switch ports
37–43	L_TRx7L_TRx1	LB TRx Switch ports
Ground	Pad Grid	Ground Pad Grid (device underside)

¹ Pads 11–16, 19, 21–23, 25, 30, 36, 44 are ground pads.

and increments counter-clockwise around the package. Table 18 lists the pad names and signal descriptions. Figure 6 illustrates the typical case markings.

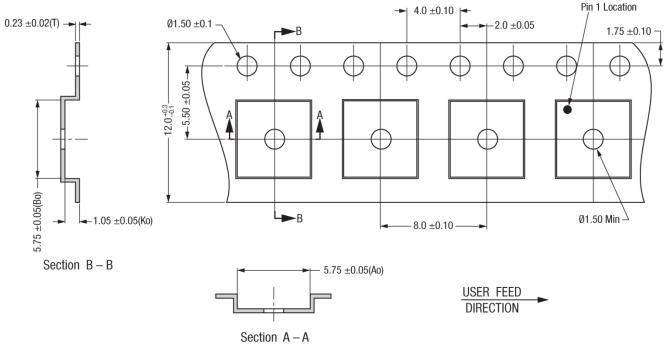
NOTE: Lines 1, 2, 3 have a maximum of 12 characters

Line 1 = Part Number and Version

Line 2 = Lot Number

Line 3 = YEAR-WEEK-Country Code (MX)

SKO... 002 203637 006


FIGURE 6. TYPICAL CASE MARKINGS

Package Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems relate to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77928-21 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the *JEDEC Standard J-STD-020*.

Production quantities of this product are shipped in the standard tape-and-reel format (Figure 7).

NOTES:

- 1. CARRIER TAPE IS BLACK CONDUCTIVE POLYSTYRENE OR POLYCARBONATE.
- 2. COVER TAPE IS TRANSPARENT AND CONDUCTIVE.
- SURFACE RESISTIVITY ≤ 1x10¹⁰ OHMS/SQ, PER EIA, JEDEC TAPE AND REEL SPEC.
 SPROCKET HLE PITCH CUMULATIVE TOLERANCE ON TAPE: ±0.20 mm.
- 5. Ao & Bo MEASURESD ON PLANE 0.30 mm ABOVE BOTTOM OF POCKET.
- 6. ALLOWABLE CAMBER TO BE 1/100 mm, NON-CUMULATIVE OVER 250 mm.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.

Carrier Tane for Body Size 5.5 x 5.5 x 0.80-1.10 mm D232-XXX(076D)

FIGURE 7. DIMENSIONAL DIAGRAM FOR CARRIER TAPE BODY SIZE 5.5 mm x 5.5 mm x 0.85-1.10 mm - MCM

Electrostatic Discharge (ESD) Sensitivity

Attention: Observe Precautions for Handling Electrostatic-Sensitive Devices. Electrostatic Discharge (ESD) can damage this device, which must be protected from ESD at all times. Static charges may easily produce potentials of several kilovolts on the human body or equipment which can discharge without detection, industry-standard ESD precautions should be used at all times. To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the ESD handling precautions listed below

- Personnel Grounding
 - Wrist Straps
- Conductive Smocks, Gloves and Finger Cots
- Antistatic ID Badges
- **Protective Workstation**
- Dissipative Table Top
- Protective Test Equipment (Properly Grounded)
- Grounded Tip Soldering Irons
- Solder Conductive Suckers
- Static Sensors

- **Facility**
- Relative Humidity Control and Air Ionizers
- Dissipative Floors (less than 1,000 M Ω to GND)
- Protective Packaging and Transportation
- Bags and Pouches (Faraday Shield)
- Protective Tote Boxes (Conductive Static Shielding)
- Protective Trays
- Grounded Carts
- Protective Work Order Holders

Ordering Information

Product Name	Order Number	Evaluation Board Part Number
SKY77928-21 SkyLiTE™ Tx-Rx Front-End Module	SKY77928-21	

Revision History

Revision	Date	Description	
Α	August 1, 2015	Initial Release – Preliminary Information	CO 1871
В	*	Revise: Change Data Sheet status to FINAL from PRELIMINARY; Features list (p1); Tables 1, 4–14, 18 Add: Table 15; Figure 6	CN 9949

References

Skyworks Application Note: PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages; Document Number 101752

Standard SMT Reflow Profiles: JEDEC Standard J-STD-020

© 2015, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIBBLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SILICH DAMAGE

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and SkyLiTE are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference