SGM3705

0.2Ω, Low THD+N, Wide Positive and Negative Signal Passing, Dual, SPST Analog Switch

GENERAL DESCRIPTION

The SGM3705 is a dual SPST (single-pole/single-throw) analog switch with low distortion. It operates from a 2.7V to 5.5V single power supply. The SGM3705 allows a -18V to +18V wide range positive and negative signal passing for 3.6V to 5.5V power supply range. When the power supply voltage is 3.0V, it can pass -15V to +15V wide range positive and negative signals.

The SGM3705 features ultra-low on-resistance, low voltage and fast switching times. The high performances make it very suitable for multiple applications, such as portable equipment, battery-powered systems, etc. In addition, the SGM3705 can be used as a dual 2-to-1 multiplexer, two single signals or one differential signal switch and power switches.

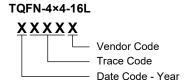
The SGM3705 is available in Green TQFN-4×4-16L and WLCSP-2.11×2.2-12B packages. It operates over an operating temperature range of -40°C to +85°C.

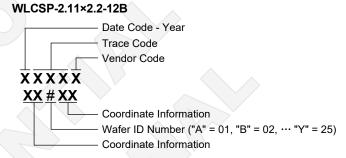
FEATURES

- Single Supply Voltage Range: 2.7V to 5.5V
- On-Resistance for Switch 1: 0.2Ω (TYP)
- On-Resistance for Switch 2: 0.2Ω (TYP)
- -18V to +18V Low Distortion, Analog Signal Passing
- Fast Switching Times
- High Off-Isolation
- Very Low Crosstalk
- Low Input Leakage Current
- 1.2V, 1.8V Logic Compatible Control Pin
- Break-Before-Make Switching
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-4×4-16L and WLCSP-2.11×2.2-12B Packages

APPLICATIONS

Portable Equipment Sample-and-Hold Circuits Battery-Powered Systems HiFi Audio Switch




PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3705	TQFN-4×4-16L	-40°C to +85°C	SGM3705YTQE16G/TR	SGM3705 YTQE16 XXXXX	Tape and Reel, 3000
3GIVI3703	WLCSP-2.11×2.2-12B	-40°C to +85°C	SGM3705YG/TR	3705 XXXXX XX#XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. XX#XX = Coordinate Information and Wafer ID Number.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

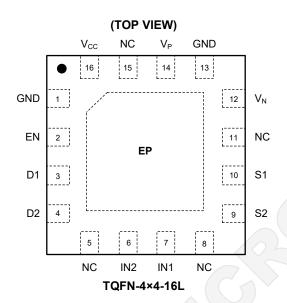
V _{CC} to GND	0V to 6V
IN1, IN2, EN to GND	0V to 6V
Analog Voltage Range	18V to +18V
Continuous Current from Sx to Dx	±800mA
Peak Current from Sx to Dx	±2000mA
I/O Clamp Current (V _I < 0)	30mA
Junction Temperature	+150°C
Storage Temperature Range6	55°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C

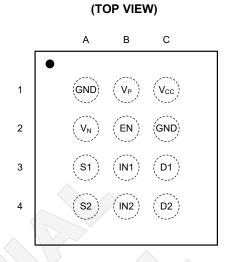
RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.7V to 5.5V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

WLCSP-2.11×2.2-12B

PIN DESCRIPTION

PI	IN					
TQFN-4×4-16L	WLCSP- 2.11×2.2-12B	NAME	FUNCTION			
1, 13	A1, C2	GND	Ground.			
2	B2	EN	Enable Control. When EN = "Low", both Sx and Dx will be disconnected, negative charge pump doesn't work and the SGM3705 will be in shutdown state. When EN = "High", negative charge pump will work, the SGM3705 will be in working state, and Sx or Dx will be connected or disconnected depending on the logical state of INx.			
3	C3	D1	Drain Terminal 1. This pin can be an input or an output of switch 1.			
4	C4	D2	Drain Terminal 2. This pin can be an input or an output of switch 2.			
5, 8, 11, 15		NC	No Connection.			
6	B4	IN2	Digital Control Pin of Switch 2. When IN2 = "Low", switch 2 is turned off, and S2 and D2 are disconnected. When IN2 = "High", switch 2 is turned on, and S2 and D2 are connected.			
7	В3	IN1	Digital Control Pin of Switch 1. When IN1 = "Low", switch 1 is turned off, and S1 and D1 are disconnected. When IN1 = "High", switch 1 is turned on, and S1 and D1 are connected.			
9	A4	S2	Source Terminal 2. This pin can be an input or an output of switch 2.			
10	A3	S1	Source Terminal 1. This pin can be an input or an output of switch 1.			
12	A2	V _N	Negative Supply Voltage Output. Connect a 10nF ceramic capacitor from V_N pin to GND.			
14	B1	V _P	Positive Supply Voltage Output. Connect a 10nF ceramic capacitor from V _P pin to GND.			
16	C1	V _{CC}	Positive Power Supply Pin.			
Exposed Pad	_	EP	No Connection.			

FUNCTION TABLE

Table 1. Function Table of Switch 1:

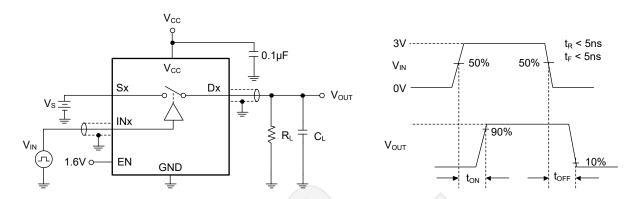
EN	IN1	S1 and D1	Negative Charge Pump
0	Х	Disconnected	Turn Off
1	0	Disconnected	Turn On
1	1	Connected (S1 = D1)	Turn On

Table 2. Function Table of Switch 2:

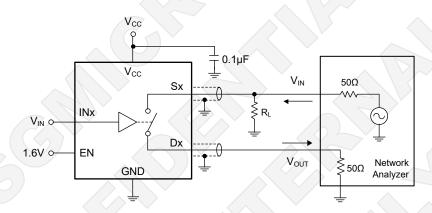
EN	IN2	S2 and D2	Negative Charge Pump
0	X	Disconnected	Turn Off
1	0	Disconnected	Turn On
1	1	Connected (S2 = D2)	Turn On

ELECTRICAL CHARACTERISTICS

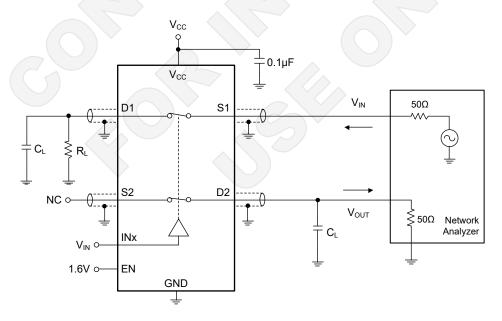
 $(V_{CC} = 3.0V, C_P = C_N = 10nF, Full = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)


PARAMETER	SYMBOL	0	CONDITIONS			TYP	MAX	UNITS
Analog Switch								
Analog Signal Range	V _{ANALOG}			Full	-15V		+15V	V
On-Resistance	R _{on}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.2		Ω
On-Resistance Match between Channels	ΔR_{ON}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.005		Ω
On-Resistance Flatness	R _{FLAT(ON)}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.001		Ω
Source OFF Leakage Current	I _{S(OFF)}	V _S = -11V, +11V,		+25°C		0.01		μA
Channel ON Leakage Current	I _{S(ON)} , I _{D(ON)}	$V_S = -11V$, +11V, or $V_S =$ floating, $V_S = -11V$		+25°C		0.01		μΑ
Digital Inputs					^	•		
Logic High for 1.8V Logic	V _{INH1.8}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C	0.78			V
Logic Low for 1.8V Logic	V _{INL1.8}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C			0.42	V
Logic High for 1.2V Logic	V _{INH1.2}	$V_{CC} = 2.7V \text{ to } 5.5$	V	+25°C	0.78			V
Logic Low for 1.2V Logic	V _{INL1.2}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C			0.42	V
Pull-Down Resistor	R _{PULL-DOWN}			+25°C		560		kΩ
Dynamic Characteristics								•
Turn-On Time	t _{on}		$V_S = 1.0V$, $V_{IH} = 1.6V$, $V_{IL} = 0V$, $R_L = 50\Omega$, $C_L = 35pF$, Test Circuit 1			410		ns
Turn-Off Time	t _{OFF}	$V_S = 1.0V, V_{IH} = 1$	$V_S = 1.0V$, $V_{IH} = 1.6V$, $V_{IL} = 0V$, $R_L = 50\Omega$, $C_L = 35pF$, Test Circuit 1			1750		ns
		f = 1kHz, R_L = 32Ω, Signal = 0dBm, Test Circuit 2		105°C		-134		- dB
Off-Isolation	O _{ISO}	$f = 1MHz$, $R_L = 50$ $C_L = 5pF$, Test Cir	+25°C		-62			
Channel-to-Channel Crosstalk	v /	f = 1kHz, R_L = 32Ω, Signal = 0dBm, Test Circuit 3		+35°C		-127		4B
Channel-to-Channel Crosstalk	X_{TALK}	C _L = 5pF, Test Cir		− +25°C		-74		- dB
-3dB Bandwidth	BW	Signal = 0dBm, R Test Circuit 4	$R_L = 50\Omega$, $C_L = 5pF$,	+25℃		145		MHz
Channel On Capacitance	C _{ON}			+25°C	>	37		pF
Injection Select Input to Common I/O	Q	$V_G = GND, R_G = 0$	$\Omega\Omega$, C_L = 1nF, Test Circuit 5	+25℃		2660		рС
			$V_S = 2V_{RMS}, R_L = 600\Omega$			-118		
			$V_S = 2V_{PP}, R_L = 600\Omega$			-115		dB
Total Harmonic Distortion + Noise	THD+N	A-Weighting, Test Circuit 6	$V_S = 2V_{PP}, R_L = 32\Omega$	+25°C		-114		
Noise		rest Gireatt o	$V_{S} = 1V_{PP}, R_{L} = 600\Omega$			-112		
		_	$V_S = 1V_{PP}, R_L = 32\Omega$			-110		
Start Up Time	t _{START}	Switch V _{EN} = 0V to V _{EN} = 1.6V		+25°C		1.7		ms
Power Requirements	4	•			1		1	
Power Supply Current	Icc	V _{IN} = 0V or 1.6V,	V _{EN} = 1.6V	+25°C		1800		μA
Power Supply Current in Shutdown State	I _{cc}	V _{IN} = 0V or 1.6V,	V _{EN} = 0V	+25°C		0.6		μA

ELECTRICAL CHARACTERISTICS (continued)

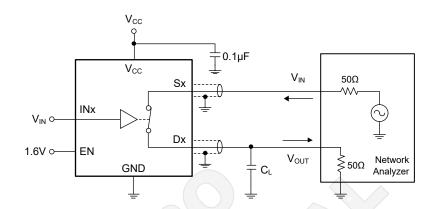

 $(V_{CC} = 5.0V, C_P = C_N = 10nF, Full = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Analog Switch								
Analog Signal Range	V _{ANALOG}			Full	-18V		+18V	V
On-Resistance	R _{ON}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.2		Ω
On-Resistance Match between Channels	ΔR_{ON}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.005		Ω
On-Resistance Flatness	R _{FLAT(ON)}	-15V ≤ V _D ≤ 15V,	I _S = -200mA	+25°C		0.001		Ω
Source OFF Leakage Current	I _{S(OFF)}	V _S = -11V, +11V,	V _D = +11V, -11V	+25°C		0.02		μA
Channel ON Leakage Current	I _{S(ON)} , I _{D(ON)}	$V_S = -11V$, +11V, or $V_S =$ floating, V		+25°C		0.02		μΑ
Digital Inputs					^	·		•
Logic High for 1.8V Logic	V _{INH1.8}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C	0.78			V
Logic Low for 1.8V Logic	V _{INL1.8}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C			0.42	V
Logic High for 1.2V Logic	V _{INH1.2}	$V_{CC} = 2.7V \text{ to } 5.5$	V	+25°C	0.78			V
Logic Low for 1.2V Logic	V _{INL1.2}	$V_{CC} = 2.7V \text{ to } 5.5^{\circ}$	V	+25°C			0.42	V
Pull Down Resistor	R _{PULL DOWN}			+25°C		560		kΩ
Dynamic Characteristics								·
Turn-On Time	t _{on}	$V_S = 1.0V, V_{IH} = 1$ $R_L = 50\Omega, C_L = 35$	+25°C		410		ns	
Turn-Off Time	t _{OFF}	$V_S = 1.0V, V_{IH} = 1$	$V_S = 1.0V$, $V_{IH} = 1.6V$, $V_{IL} = 0V$, $R_L = 50\Omega$, $C_L = 35pF$, Test Circuit 1			1750		ns
Off-Isolation	O _{ISO}	f = 1kHz, R_L = 32 $Ω$, Signal = 0dBm, Test Circuit 2		+25°C		-134		- dB
OII-ISOIALIOII	Oiso	$f = 1MHz$, $R_L = 50$ $C_L = 5pF$, Test Cir	+25 C		-62			
Channel-to-Channel Crosstalk	X _{TALK}	Test Circuit 3	Ω, Signal = 0dBm,	+25°C		-127		- dB
Original Residence	MALK	C _L = 5pF, Test Cir	0Ω, Signal = 0dBm, cuit 3			-74		
-3dB Bandwidth	BW	Signal = 0dBm, R Test Circuit 4	$R_L = 50\Omega$, $C_L = 5pF$,	+25°C		145		MHz
Channel On Capacitance	C _{ON}			+25°C	>	36		pF
Injection Select Input to Common I/O	Q	$V_G = GND, R_G = 0$	$\Omega\Omega$, C_L = 1nF, Test Circuit 5	+25℃		2660		рС
Comment is C			$V_S = 2V_{RMS}, R_L = 600\Omega$			-118		
			$V_S = 2V_{PP}, R_L = 600\Omega$			-115		dB
Total Harmonic Distortion + Noise	THD+N	A-Weighting, Test Circuit 6	$V_S = 2V_{PP}, R_L = 32\Omega$	+25°C		-114		
140130		root on out o	$V_{S} = 1V_{PP}, R_{L} = 600\Omega$			-112		
			$V_S = 1V_{PP}, R_L = 32\Omega$	7		-107		
Start Up Time	t _{START}	Switch V _{EN} = 0V to V _{EN} = 1.6V		+25°C		1.7		ms
Power Requirements		•		•				
Power Supply Current	Icc	V _{IN} = 0V or 1.6V,	V _{EN} = 1.6V	+25°C		1800		μA
Power Supply Current in Shutdown State	I _{cc}	V _{IN} = 0V or 1.6V,	V _{EN} = 0V	+25°C		0.6		μA

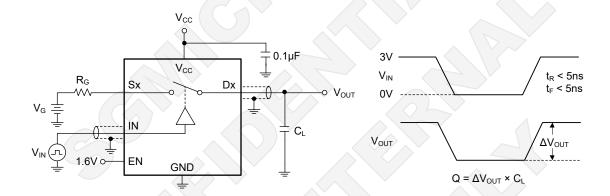

TEST CIRCUITS

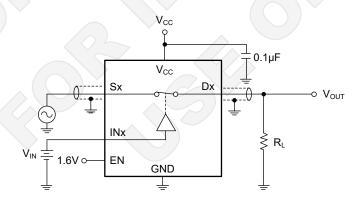
Test Circuit 1. Switching Times (ton, toff)

Test Circuit 2. Off-Isolation



Channel-to-Channel Crosstalk = -20 log (V_S/V_{OUT})


Test Circuit 3. Channel-to-Channel Crosstalk


TEST CIRCUITS (continued)

Test Circuit 4. -3dB Bandwidth

Test Circuit 5. Charge Injection (Q)

Test Circuit 6. Total Harmonic Distortion + Noise (THD+N)

APPLICATION INFORMATION

Speaker + Receiver is always used in smart phone, and high voltage class D speaker driver (smart audio PA) is used to drive speaker for high volume audio. But the high output voltage of class D speaker driver will damage the receiver driver because receiver driver is designed by low voltage technology. The SGM3705

can solve this design issue by providing the safe isolation between receiver driver and high voltage class D speaker driver. The SGM3705 provides low R_{ON} channels to pass the positive and negative signals from capless receiver driver. The circuit is shown in Figure 1.

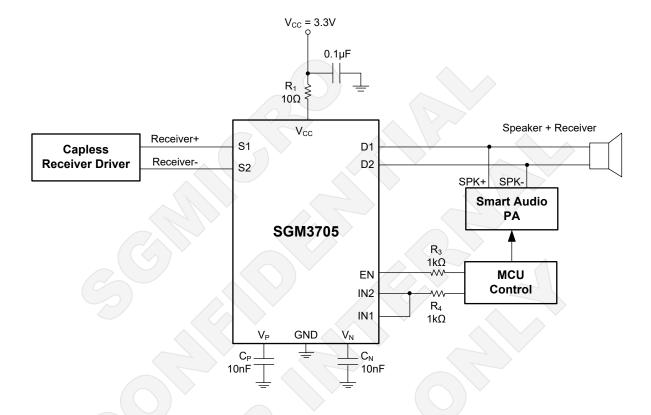


Figure 1. Typical Application Circuit for Speaker + Receiver

APPLICATION INFORMATION (continued)

To improve audio quality of portable devices, external audio power amplifier is always used to drive speaker, and the integrated speaker power amplifier in PMIC will be ignored. The high performance SGM3705 is used to

pass the audio signal in application. The circuit is shown in Figure 2 and a stable 3.3V power supply is required in this circuit.

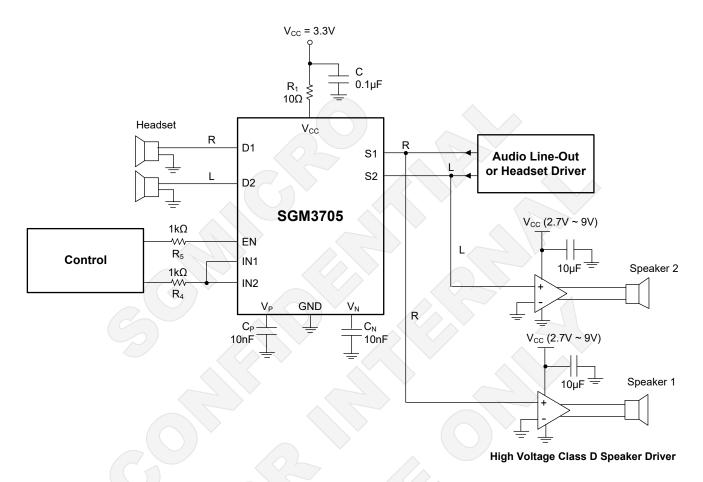
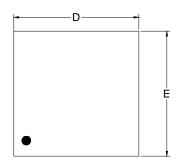
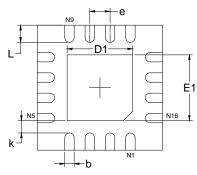
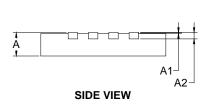
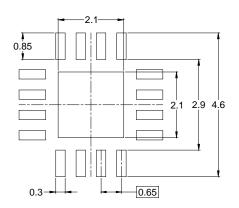




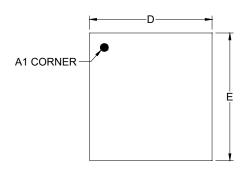
Figure 2. Typical Application Circuit for Audio Signal Switch

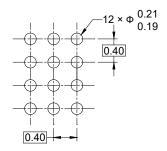

PACKAGE OUTLINE DIMENSIONS TQFN-4×4-16L



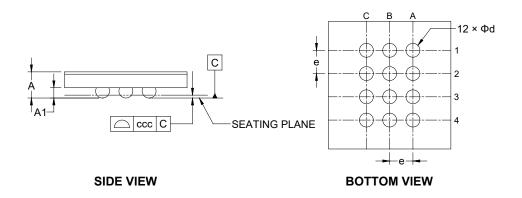
TOP VIEW

BOTTOM VIEW


RECOMMENDED LAND PATTERN (Unit: mm)

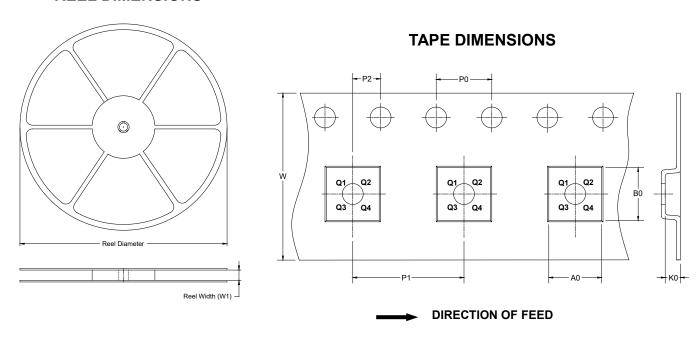

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008	REF	
D	3.900	4.100	0.154	0.161	
D1	2.000	2.200	0.079	0.087	
E	3.900	4.100	0.154	0.161	
E1	2.000	2.200	0.079	0.087	
k	0.200	MIN	0.008	3 MIN	
b	0.250	0.350	0.010	0.014	
е	0.650) TYP	0.026 TYP		
L	0.450	0.650	0.018	0.026	

NOTE: This drawing is subject to change without notice.


PACKAGE OUTLINE DIMENSIONS WLCSP-2.11×2.2-12B

TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

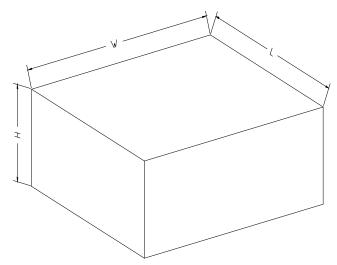


Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
Α	-	-	0.488				
A1	0.157	-	0.197				
D	2.075	-	2.135				
E	2.165	-	2.225				
d	0.209	0.209 - 0.269					
е	0.400 BSC						
ccc	0.050						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-4×4-16L	13"	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q2
WLCSP-2.11×2.2-12B	7"	9.5	2.41	2.46	0.77	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5