

www.ti.com.cn

THCS594A-SEPTEMBER 2011-REVISED OCTOBER 2011 用于CCD传感器的低功率,高速缓冲器

特性

高速:

- 210 MHz, 3-dB 带宽

- 快速建立时间
- 可调有效负载电流
- 可调驱动强度
- 低功率: 20 mW
- 超小型封装:

- 1-mm × 1-mm 超薄型 0.35-mm QFN 封装

说明

VSP1000 是一款高速,低噪声,快速建立,单位增益 缓冲器。此款器件特别适合安装在电荷耦合器 件(CCD)和模拟前端(AFE)之间。此器件具有一 个可调节有效负载电流,此电流可为CCD传感器的输 出提供合适的负载。VSP1000 还特有一个可调节输出 驱动强度,此驱动强度可根据带宽要求进行设置。在 2 mA驱动电流情况下,此器件提供 210 MHz的带宽, 这可实现超低功率运行情况下的良好性能。超小型 1 mm × 1 mm的封装尺寸以及 0.35 mm的封装高度有助 于节省印刷电路板(PCB)的空间并可实现很低的外 形尺寸。

总的来说,VSP1000 非常适合驱动德州仪器生产的用于CCD传感器的AFE以及任何模数转换器(ADC)输入。此可调节负载电流可轻松实现与不同制造商生产的多种CCD传感器间的接口连接。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

ZHCS594A-SEPTEMBER 2011-REVISED OCTOBER 2011

www.ti.com.cn

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION **											
PRODUCT	PACKAGE- LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY					
V6D1000		Dec	0°C to +85°C		VSP1000DSFT	Tape and Reel, 250					
VSP1000	QFN-6 DSF	0 C 10 +65 C	VSP1000DSF	VSP1000DSFR	Tape and Reel, 5000						

PACKAGE/ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over free-air temperature range, unless otherwise noted.

		VSP1000	UNIT
Supply voltage	VCC	20.0	V
Input voltage		-0.3 to VCC + 0.3	V
Input current	Any pin except supplies	±10	mA
Ambient temperature under	bias	-25 to +85	°C
Storage temperature		-55 to +125	°C
Junction temperature		+150	°C
Package temperature (IR re	flow, peak)	+250	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

www.ti.com.cn

ZHCS594A - SEPTEMBER 2011 - REVISED OCTOBER 2011

ELECTRICAL CHARACTERISTICS

All specifications at T_A = +25°C, V_{CC} = 13 V, R_{IDRV} = 90 k Ω , and C_{LOAD} = 22 pF, unless otherwise noted.

			v			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	RSUPPLY	•	+			
V _{CC}	Supply voltage		10	13	16	V
I _{CC}	Supply current			2		mA
DYNAM	IIC PERFORMANCE					
	Gain	1-MHz, 200-mV _{PP} input		0.999		ns
	Rise time	V _{IN} = 7.5 V to 8.5 V		5		ns
	Fall time	V _{IN} = 8.5 V to 7.5 V		6		ns
	I/O delay time	V _{IN} = 7.5 V to 8.5 V		1.28		ns
	–3-dB bandwidth	100-mV _{PP} input		210		MHz
V _{IN}	Input voltage range	V _{CC} = 13 V	1.5		10.5	V
T _A	Operating free-air temperature		0		+85	°C

THERMAL INFORMATION

		VSP1000	
	THERMAL METRIC ⁽¹⁾	DSF	UNITS
	Junction-to-ambient thermal resistance	6 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	333.2	
θ_{JCtop}	Junction-to-case (top) thermal resistance	56.9	
θ_{JB}	Junction-to-board thermal resistance	239	°C/W
ΨJT	Junction-to-top characterization parameter	13.9	C/VV
Ψ_{JB}	Junction-to-board characterization parameter	236	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	202	

(1) 有关传统和新的热度量的更多信息,请参阅 *IC* 封装热度量 应用报告 SPRA953。

ZHCS594A-SEPTEMBER 2011-REVISED OCTOBER 2011

www.ti.com.cn

PIN CONFIGURATION

DSF PACKAGE 1-mm × 1-mm × 0.35-mm QFN-6 (TOP VIEW)

PIN ASSIGNMENTS

PIN NAME	PIN NUMBER	PIN NUMBER TYPE DESCRIPTION					
IN	1	Analog input	Input terminal; connect this pin to the sensor output				
VEE	2	Ground	Negative supply terminal; must be connected to ground				
OUT	3	Analog output	Output terminal; connect this pin to the AFE input				
IDRV	4	Analog input	Drive current adjustment; refer to the application diagram for further details				
VCC	VCC 5 Power		Positive supply terminal; must be decoupled to the VEE terminal with a 0.1- μF capacitor				
ISF	6	Analog input	Sink current adjustment; refer to the application diagram for further details				

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Block Diagram

XAS STRUMENTS

ZHCS594A - SEPTEMBER 2011 - REVISED OCTOBER 2011

TEXAS INSTRUMENTS

ZHCS594A-SEPTEMBER 2011-REVISED OCTOBER 2011

www.ti.com.cn

OVERVIEW

TYPICAL APPLICATION CIRCUIT

Figure 9 shows a typical application circuit for the VSP1000.

Figure 9. Typical Application Circuit

VSP1000

www.ti.com.cn

DESIGN EQUATIONS

The CCD outputs must be loaded with current for proper operation. The VSP1000 provides the ability to draw adjustable current through the IN pin. The value of the input load current can be set by choosing an appropriate value of R_{ISF} connected to the ISF pin, as per Equation 1.

$$I_{\rm IN} = \frac{\left(\frac{(V_{\rm CC} \times 100 \text{ k}\Omega)}{(R_{\rm ISF} + 100 \text{ k}\Omega)}\right) - 1.2}{1 \text{ k}\Omega}$$
(1)

The bandwidth of the VSP1000 can be adjusted using the IDRV pin. The resistor connected at IDRV determines the drive strength of the output buffer as well as the total quiescent current of the VSP1000. Equation 2 and Equation 3 describe the relationship between R_{IDRV} and the drive strength. C_{IDRV} is used to increase the power-supply rejection ratio of the device. A value of 0.1 μ F for C_{IDRV} is recommended.

$$I_{DRV} = \frac{(V_{CC} - 5)}{(R_{IDRV} + 10 \text{ k}\Omega)}$$
(2)
$$I_{CC} = 26 \times I_{DRV}$$
(3)

EXAMPLE CONFIGURATIONS

Table 1 details several example configurations for the VSP1000. All examples are with V_{CC} = 13 V.

Table 1. Example Configurations

CONFIGURATION	I _{CC} (mA)	R_{ISF} (k Ω)	R_{IDRV} (k Ω)
Bandwidth = 170 MHz , I_{IN} = 2 mA	1.5	300	133
Bandwidth = 170 MHz , I_{IN} = 4 mA	1.5	150	133
Bandwidth = 210 MHz , I_{IN} = 2 mA	2	300	91
Bandwidth = 210 MHz , I_{IN} = 4 mA	2	150	91
Bandwidth = 260 MHz , I_{IN} = 2 mA	3	300	62
Bandwidth = 260 MHz , I_{IN} = 4 mA	3	150	62

LAYOUT GUIDELINES

The decoupling capacitors C_{IDRV}, R_{IDRV}, and R_{ISF} should be placed as close as possible to the VSP1000.

ZHCS594A – SEPTEMBER 2011 – REVISED OCTOBER 2011

www.ti.com.cn

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2011) to Revision A					
•	Updated Figure 4	5			
•	Updated Figure 5	5			

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
VSP1000DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	0 to 85	VK	Samples
VSP1000DSFT	ACTIVE	SON	DSF	6	250	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	0 to 85	VK	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
VSP1000DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.63	4.0	8.0	Q2
VSP1000DSFT	SON	DSF	6	250	180.0	9.5	1.16	1.16	0.63	4.0	8.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
VSP1000DSFR	SON	DSF	6	5000	184.0	184.0	19.0
VSP1000DSFT	SON	DSF	6	250	184.0	184.0	19.0

DSF0006A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

DSF0006A

EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司