

Photocouplers Infrared LED & Photo IC

TLP2363

1. Applications

- Programmable Logic Controllers (PLCs) (IEC 61131-2)
- · Factory Automation (FA)
- · Measuring Instruments

2. General

The Toshiba TLP2363 consists of a high-output light-emitting diode coupled with integrated high gain, high-speed photodetectors. This product guaratees operation at up to $105\,^{\circ}\text{C}$ and on supplies from 2.7 to 5.5 V. It is housed in the SO6 package. The TLP2363 conbined with appropriate external components enables a 24 V digital input module to adhere to the IEC 61131-2 Type 1 specification. The TLP2363 has an internal Faraday shield that provides a guaranteed common-mode transient immunity of $\pm 20\,\text{kV}/\mu\text{s}$.

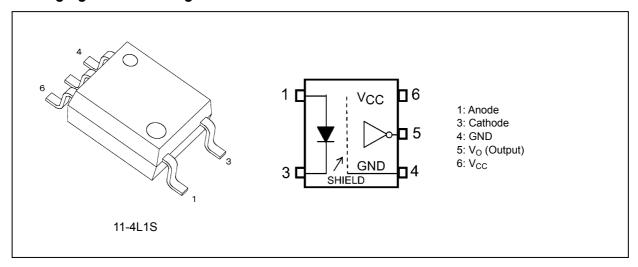
3. Features

- (1) Inverter logic type (open collector output)
- (2) Package: SO6
- (3) Operating temperarure: -40 to 105 °C
- (4) Supply voltage: 2.7 to 5.5 V
- (5) Data transfer rate: 15 Mbps (typ.)
- (6) Threshold input current: 5.0 mA (max)
- (7) Threshold input current: 0.3 to 2.4 mA ($V_{CC} = 3.3 \text{ V}$, $R_L = 1 \text{ k}\Omega$)
- (8) Supply current: 4 mA (max)
- (9) Common-mode transient immunity: ±20 kV/µs (min)
- (10) Isolation voltage: 3750 Vrms (min)
- (11) Safety standards

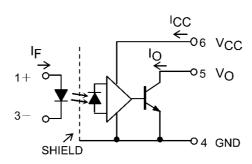
UL-recognized: UL 1577, File No.E67349

cUL-recognized: CSA Component Acceptance Service No.5A File No.E67349

VDE-approved: EN 60747-5-5, EN 62368-1 (Note 1) CQC-approved: GB4943.1, GB8898 Japan Factory



仅适用干海拔 2000m 以下地区安全使用


Note 1: When a VDE approved type is needed, please designate the Option (V4).

4. Packaging and Pin Assignment

5. Internal Circuit (Note)

Note: A 0.1- μF bypass capacitor must be connected between pin 6 and pin 4.

6. Principal of Operation

6.1. Truth Table

Input	LED	Output
Н	ON	L
L	OFF	Н

6.2. Mechanical Parameters

Characteristics	Min	Unit
Creepage distances	5.0	mm
Clearance distances	5.0	
Internal isolation thickness	0.4	

7. Absolute Maximum Ratings (Note) (Unless otherwise specified, Ta = 25 °C)

	Characteristics		Symbol	Note	Rating	Unit
LED	Input forward current		I _F		25	mA
	Input forward current derating	(T _a ≥ 85 °C)	$\Delta I_F/\Delta T_a$		-0.5	mA/°C
	Input forward current (pulsed)		I _{FP}	(Note 1)	50	mA
	Input forward current derating (pulsed)	(T _a ≥ 85 °C)	$\Delta I_{FP}/\Delta T_a$		-1.0	mA/°C
	Peak transient input forward current		I _{FPT}	(Note 2)	1	Α
	Peak transient input forward current derating	(T _a ≥ 85 °C)	$\Delta I_{FPT}/\Delta T_a$		-20	mA/°C
	Input power dissipation		P _D		40	mW
	Input power dissipation derating	(T _a ≥ 85 °C)	$\Delta P_D/\Delta T_a$		-0.8	mW/°C
	Input reverse voltage	,	V _R		5	V
Detector	Output current		I _O		25	mA
	Output voltage		Vo		-0.5 to 6	V
	Supply voltage		V _{CC}		-0.5 to 6	V
	Output power dissipation		Po		60	mW
	Output power dissipation derating	(T _a ≥ 85 °C)	$\Delta P_{O}/\Delta T_{a}$		-1.2	mW/°C
Common	Operating temperature		T _{opr}		-40 to 105	°C
	Storage temperature		T _{stg}		-55 to 125	°C
	Lead soldering temperature	(10 s)	T _{sol}		260	°C
	Isolation voltage	(AC, 60 s, R.H. ≤ 60 %)	BV _S	(Note 3)	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note: A ceramic capacitor $(0.1 \, \mu F)$ should be connected between pin 6 and pin 4 to stabilize the operation of a high-gain linear amplifier. Otherwise, this photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

- Note 1: Pulse width (PW) \leq 1 ms, duty = 50 %
- Note 2: Pulse width (PW) \leq 1 μ s, 300 pps
- Note 3: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

8. Recommended Operating Conditions (Note)

Characteristics	Symbol	Note	Min	Тур.	Max	Unit
Rise time of I _F	$t_{r(IF)}$	(Note 1)	5n	_	60	s
Fall time of I _F	t _{f(IF)}	(Note 2)	5n	_	60	s
Supply voltage	V _{CC}	(Note 5)	2.7	3.3/5	5.5	V
Rise time of V _{CC}	t _{r(VCC)}	(Note 3)	10μ	_	60	s
Fall time of V _{CC}	t _{f(VCC)}	(Note 4)	10μ	_	60	s
Operating temperature	T _{opr}	(Note 5)	-40	_	105	°C

- Note: The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this data sheet should also be considered.
- Note: A ceramic capacitor $(0.1 \,\mu\text{F})$ should be connected between pin 6 and pin 4 to stabilize the operation of a high-gain linear amplifier. Otherwise, this photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.
- Note 1: The rise time of input forward current which takes for linear increase from 0 mA to 2.4 mA.
- Note 2: The fall time of input forward current which takes for linear decrease from 2.4 mA to 0 mA.
- Note 3: The rise time of supply voltage which takes for linear increase from 0 V to 2.7 V.
- Note 4: The fall time of supply voltage which takes for linear decrease from 2.7 V to 0 V.
- Note 5: Denotes the operating range, not the recommended operating condition.

9. Electrical Characteristics (Note) (Unless otherwise specified, T_a = -40 to 105 °C, V_{CC} = 2.7 to 5.5 V)

Characteristics	Symbol	Note	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input forward voltage	V _F		-	I _F = 2.6 mA, T _a = 25 ℃	1.35	1.5	1.65	V
Input forward voltage temperature coefficient	$\Delta V_F/\Delta T_a$		-	I _F = 2.6 mA	_	-1.54	_	mV/°C
Input reverse current	I _R		-	V _R = 5 V, T _a = 25 °C	_		10	μА
Input capacitance	Ct		-	V = 0 V, f = 1 MHz, T _a = 25 °C	_	17	_	pF
High-level output current	Іон			$V_F = 0.8 \text{ V}, V_O = 5.5 \text{ V},$ $V_{CC} = 5.5 \text{ V}$	_	_	50	μА
				$V_F = 0.8 \text{ V}, V_O = 5.5 \text{ V},$ $V_{CC} = 5.5 \text{ V}, T_a = 25 ^{\circ}\text{C}$	_		10	
Low-level output voltage	V _{OL}		Fig. 12.1.2	I _F = 5 mA, I _O = 13 mA (Sinking)	_	0.33	0.6	V
Low-level supply current	I _{CCL}		Fig. 12.1.3	I _F = 5 mA	_	1.8	4.0	mA
High-level supply current	Іссн		Fig. 12.1.4	I _F = 0 mA	_	1.6	4.0	
Threshold input current (H/L)	I _{FHL}		-	I _O = 13 mA (Sinking), V _O < 0.6 V	_	1.25	5.0	
				$V_{CC} = 3.3 \text{ V}, R_L = 1 \text{ k}\Omega, V_O$ < 0.6 V	0.3	0.9	2.4	

Note: All typical values are at V_{CC} = 5 V, T_a = 25 °C.

10. Isolation Characteristics (Unless otherwise specified, T_a = 25 °C)

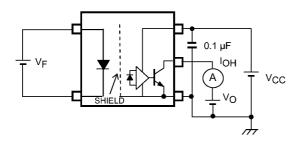
Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Total capacitance (input to output)	Cs	(Note 1)	V _S = 0 V, f = 1 MHz		0.8	_	pF
Isolation resistance	R _S	(Note 1)	V _S = 500 V, R.H. ≤ 60 %	1012	1014		Ω
Isolation voltage	BVS	(Note 1)	AC, 60 s	3750			Vrms

Note 1: This device is considered as a two-terminal device: Pins 1 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

11. Switching Characteristics (Note) (Unless otherwise specified, T_a = -40 to 105 °C, V_{CC} = 2.7 to 5.5 V)

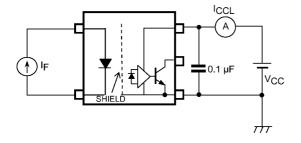
Characteristics	Symbol	Note	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Propagation delay time (H/L)	t _{pHL}	(Note 1)	Fig.	$I_F = 0 \rightarrow 7.5 \text{ mA}, R_L = 350 \Omega$	_	44	80	ns
Propagation delay time (L/H)	t _{pLH}	(Note 1)	12.1.5	$I_F = 7.5 \rightarrow 0 \text{ mA}, R_L = 350 \Omega$	_	41	80	
Pulse width distortion	t _{pHL} - t _{pLH}	(Note 1)		I _F = 7.5 mA, R _L = 350	_	3.2	35	
Propagation delay skew (device to device)	t _{psk}	(Note 1), (Note 2)		$I_F = 7.5 \text{ mA}, R_L = 350$	-40		40	
Fall time	t _f	(Note 1)		$I_F = 0 \rightarrow 7.5 \text{ mA}, R_L = 350 \Omega$	_	7		
Rise time	t _r	(Note 1)		$I_F = 7.5 \rightarrow 0 \text{ mA}, R_L = 350 \Omega$	_	23	_	
High-level common-mode transient immunity	CM _H		Fig. 12.1.6	V _{CM} = 1000 V _{p-p} , I _F = 0 mA, V _{CC} = 3.3 V / 5 V, T _a = 25 °C	±20	±40		kV/μs
Low-level common-mode transient immunity	CML			$V_{CM} = 1000 V_{p-p}, I_F = 7.5 \text{ mA},$ $V_{CC} = 3.3 \text{ V} / 5 \text{ V}, T_a = 25 ^{\circ}\text{C}$	±20	±40		

Note: All typical values are at V_{CC} = 5 V, T_a = 25 °C.


Note 1: f = 1 MHz, duty = 50 %, input current $t_r = t_f = 5$ ns or less, C_L is less than 15 pF which includes probe and stray wiring capacitance.

Note 2: The propagation delay skew, t_{psk} , is equal to the magnitude of the worst-case difference in t_{pHL} and/or t_{pLH} that will be seen between units at the same given conditions (supply voltage, input current, temperature, etc).

12. Test Circuits and Characteristics Curves


12.1. Test Circuits

ο.1 μF VCC

Fig. 12.1.1 IOH Test Circuit

Fig. 12.1.2 V_{OL} Test Circuit

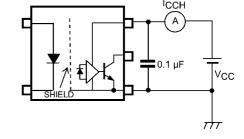
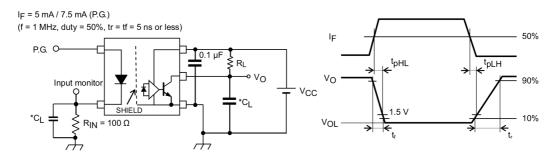



Fig. 12.1.3 I_{CCL} Test Circuit

Fig. 12.1.4 I_{CCH} Test Circuit

P.G.: Pulse generator

 $*C_L$ is less than 15 pF which includes probe and stray wiring capacitance.

Fig. 12.1.5 Switching Time Test Circuit and Waveform

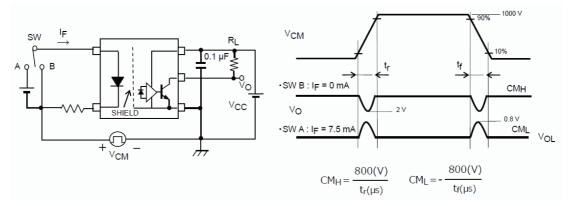


Fig. 12.1.6 Common-Mode Transient Immunity Test Circuit and Waveform

12.2. Characteristics Curves (Note)

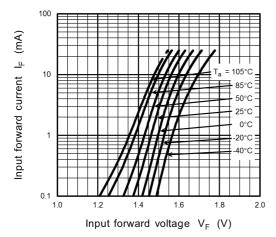
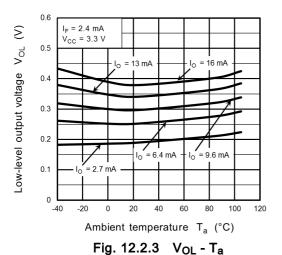



Fig. 12.2.1 I_F - V_F

Low-level output voltage V_{OL} I_O = 16 mA = 13 mA 0.4 0.3 0.2 $I_0 = 6.4 \text{ mA}$ $I_0 = 9.6 \text{ mA}$ 0.1

0.6

0.5

0

-40

 \leq

 $I_F = 5 \text{ mA}$

V_{CC} = 3.3 V

Ambient temperature T_a (°C) Fig. 12.2.5 V_{OL} - T_a

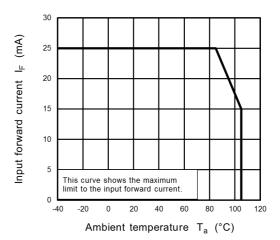


Fig. 12.2.2 I_F - T_a

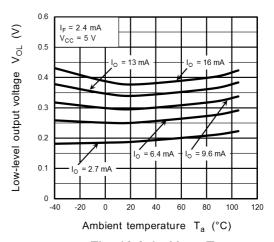


Fig. 12.2.4 V_{OL} - T_a

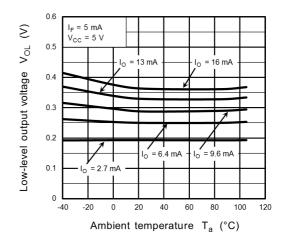


Fig. 12.2.6 V_{OL} - T_a

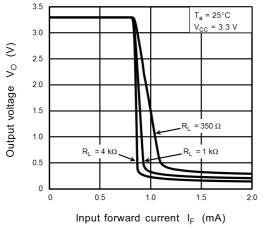


Fig. 12.2.7 V_O - I_F

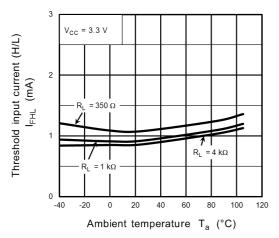


Fig. 12.2.9 I_{FHL} - T_a

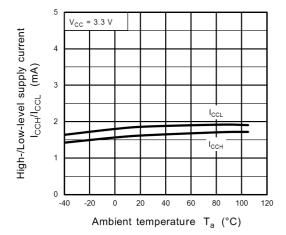


Fig. 12.2.11 I_{CCH}, I_{CCL} - T_a

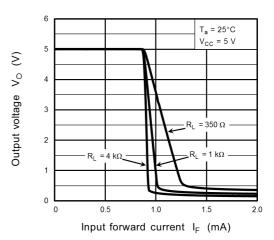


Fig. 12.2.8 V_O - I_F

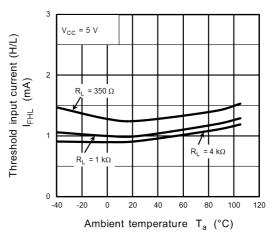
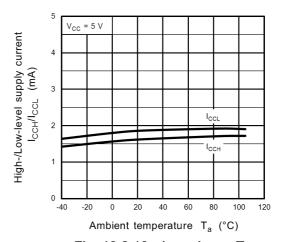



Fig. 12.2.10 I_{FHL} - T_a

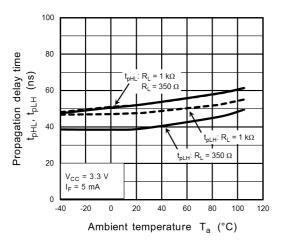


Fig. 12.2.13 t_{pHL} , t_{pLH} - T_a

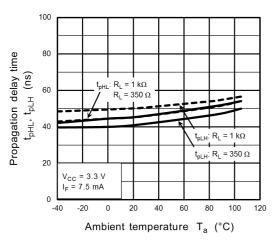


Fig. 12.2.15 t_{pHL} , t_{pLH} - T_a

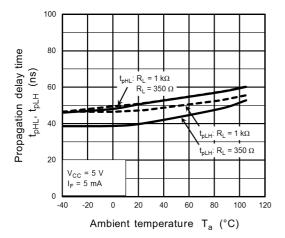


Fig. 12.2.17 t_{pHL} , t_{pLH} - T_a

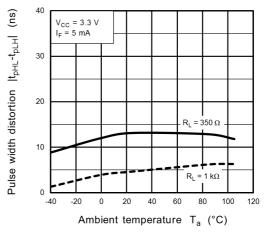


Fig. 12.2.14 It_{pHL}-t_{pLH}I - T_a

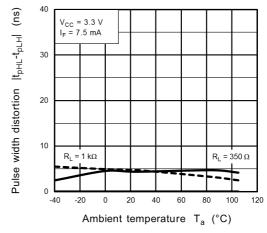


Fig. 12.2.16 It_{pHL}-t_{pLH}I - T_a

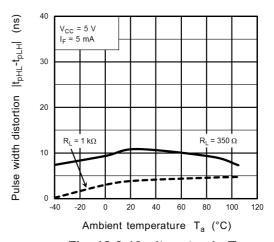
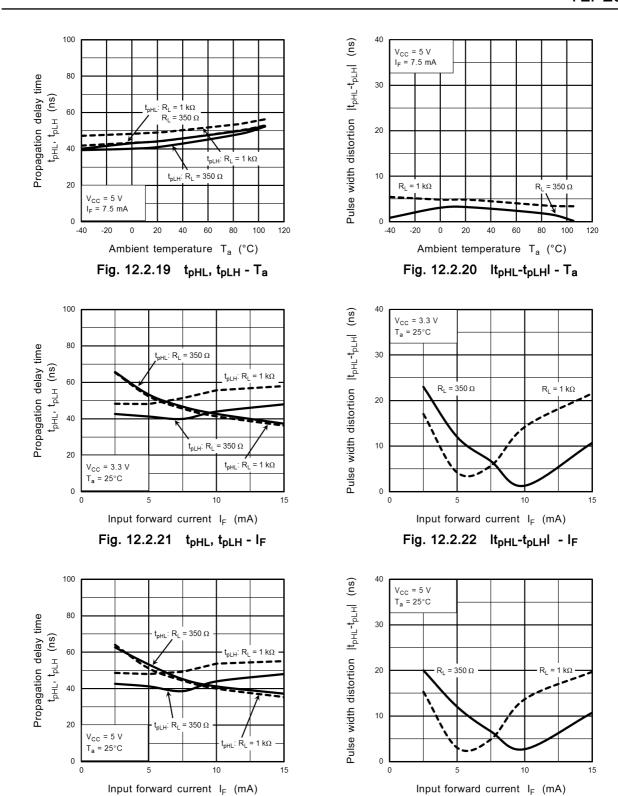



Fig. 12.2.18 It_{pHL}-t_{pLH}I - T_a

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

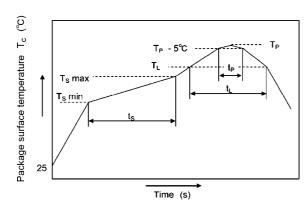
Fig. 12.2.23 t_{pHL} , t_{pLH} - I_{F}

Fig. 12.2.24 ItpHL-tpLHI - IF

13. Soldering and Storage

13.1. Precautions for Soldering

The soldering temperature should be controlled as closely as possible to the conditions shown below, irrespective of whether a soldering iron or a reflow soldering method is used.


· When using soldering reflow.

The soldering temperature profile is based on the package surface temperature.

(See the figure shown below, which is based on the package surface temperature.)

Reflow soldering must be performed once or twice.

The mounting should be completed with the interval from the first to the last mountings being 2 weeks.

	Symbol	Min	Max	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	S
Ramp-up rate (T _L to T _P)			3	°C/s
Liquidus temperature	TL	2	17	°C
Time above T _L	t _L	60	150	s
Peak temperature	T _P		260	°C
Time during which T_c is between $(T_P - 5)$ and T_P	t _P		30	s
Ramp-down rate (T _P to T _L)			6	°C/s

An Example of a Temperature Profile When Lead(Pb)-Free Solder Is Used

· When using soldering flow

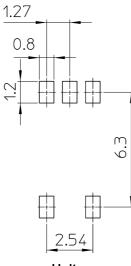
Preheat the device at a temperature of 150 $^{\circ}\text{C}$ (package surface temperature) for 60 to 120 seconds.

Mounting condition of 260 °C within 10 seconds is recommended.

Flow soldering must be performed once.

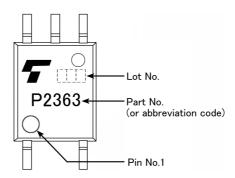
· When using soldering Iron

Complete soldering within 10 seconds for lead temperature not exceeding 260 $^{\circ}$ C or within 3 seconds not exceeding 350 $^{\circ}$ C


Heating by soldering iron must be done only once per lead.

13.2. Precautions for General Storage

- · Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5 °C to 35 °C and 45 % to 75 %, respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- · When restoring devices after removal from their packing, use anti-static containers.
- · Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.



14. Land Pattern Dimensions (for reference only)

Unit: mm

15. Marking

16. EN 60747-5-5 Option (V4) Specification

The following part naming conventions are used for the devices that have been qualified according to option (V4) of EN 60747.

Example: TLP2363(V4-TPL,E

V4: EN 60747 option TPL: Tape type

E: [[G]]/RoHS COMPATIBLE (Note 2)

Note 1: Use TOSHIBA standard type number for safety standard application.

e.g., TLP2363(V4-TPL,E \rightarrow TLP2363

Note 2: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Description	Symbol	Rating	Unit
Application classification			
for rated mains voltage ≤ 150 V _{rms} for rated mains voltage ≤ 300 V _{rms}		I-IV I-III	_
Climatic classification		40 / 105 / 21	_
Pollution degree		2	_
Maximum operating insulation voltage	Viorm	707	Vpeak
Input to output test voltage, Method A $Vpr = 1.6 \times V_{IORM}$, type and sample test $t_p = 10 \text{ s}$, partial discharge < 5 pC	Vpr	1131	Vpeak
Input to output test voltage, Method B Vpr = 1.875 × V $_{IORM}$, 100% production test t_P = 1 s, partial discharge < 5 pC	Vpr	1325	Vpeak
Highest permissible overvoltage (transient overvoltage, t _{pr} = 60 s)	VTR	6000	Vpeak
Safety limiting values (max. permissible ratings in case of fault, also refer to thermal derating curve)			
current (input current I_F , P_{so} = 0) power (output or total power dissipation) temperature	lsi Pso Ts	250 400 150	mA mW °C
Insulation resistance V_{IO} = 500 V, T_a = 25 °C V_{IO} = 500 V, T_a = 100 °C V_{IO} = 500 V, T_a = Ts	Rsi	≥ 10 ¹² ≥ 10 ¹¹ ≥ 10 ⁹	Ω

Fig. 16.1 EN 60747 Isolation Characteristics

Minimum creepage distance	Cr	5.0 mm
Minimum clearance	СІ	5.0 mm
Minimum insulation thickness	ti	0.4 mm
Comparative tracking index	CTI	500

Fig. 16.2 Insulation Related Specifications (Note)

Note: This photocoupler is suitable for **safe electrical isolation** only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

Fig. 16.3 Marking on Packing for EN 60747

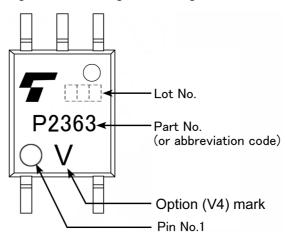
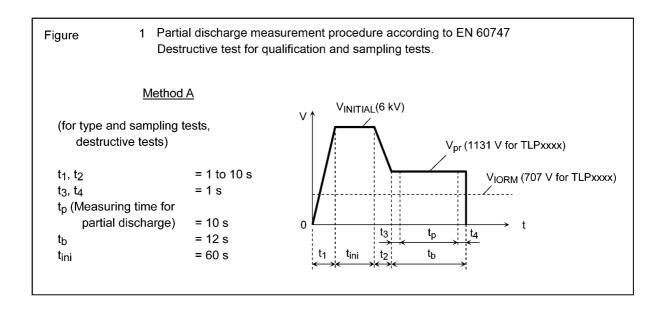
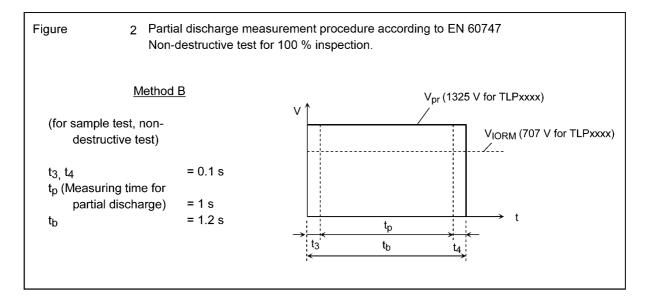




Fig. 16.4 Marking Example (Note)

 $Note: \quad The above \ marking \ is \ applied \ to \ the \ photocouplers \ that \ have \ been \ qualified \ according \ to \ option \ (V4) \ of \ EN \ 60747.$

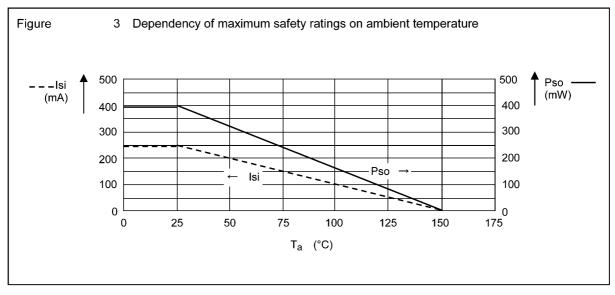


Fig. 16.5 Measurement Procedure

17. Ordering Information

When placing an order, please specify the part number, tape type and quantity as shown in the following example.

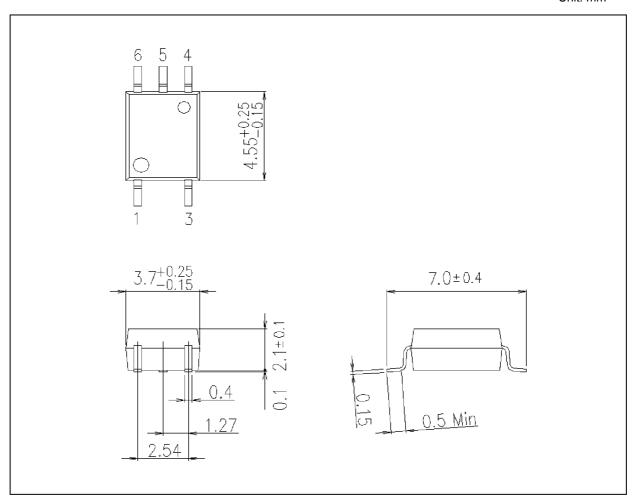
Example) TLP2363(TPL,E 3000 pcs

Part number: TLP2363

Tape type: TPL (12-mm pitch)

[[G]]/RoHS COMPATIBLE: E (Note 1)

Quantity (must be a multiple of 3000): 3000 pcs


Note 1: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Package Dimensions

Unit: mm

Weight: 0.08 g (typ.)

	Package Name(s)
TOSHIBA: 11-4L1S	