

TC74AC14FT

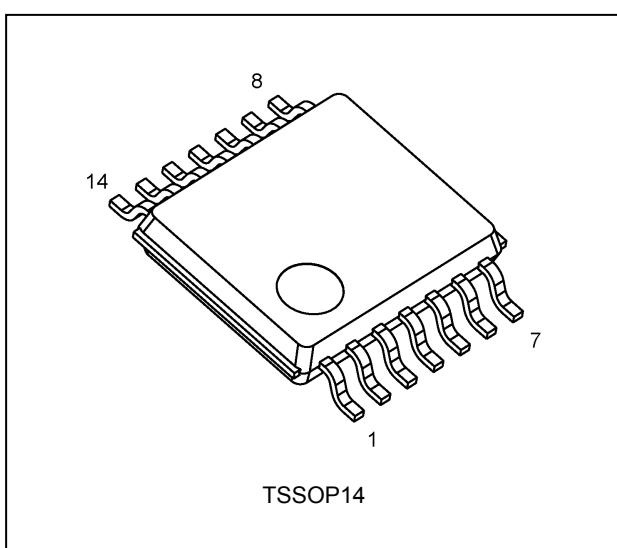
1. Functional Description

- Hex Schmitt Inverter

2. General

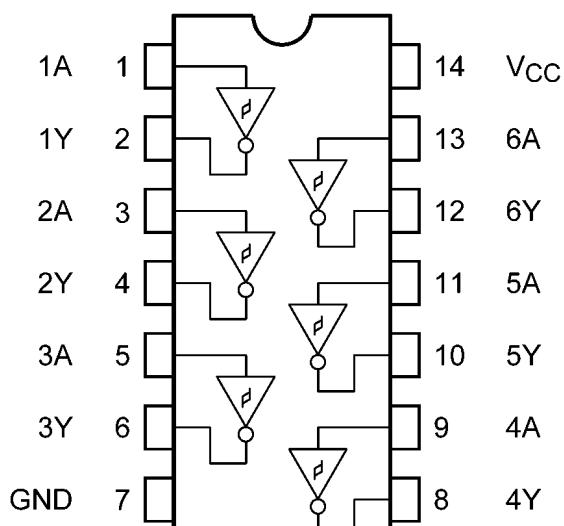
The TC74AC14FT is an advanced high speed CMOS SCHMITT INVERTER fabricated with silicon gate and double-layer metal wiring C2MOS technology.

It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

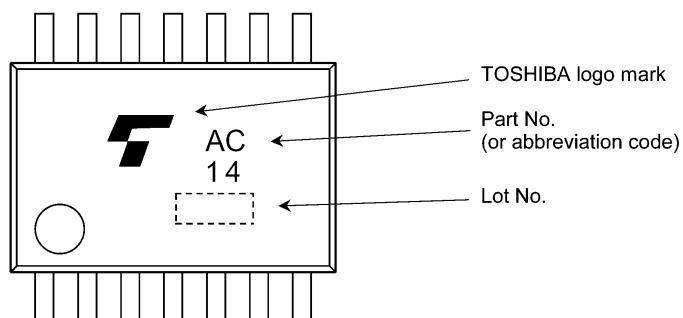

Pin configuration and function are the same as the TC74AC04FT but the inputs have hysteresis and with its schmitt trigger function, the TC74AC14FT can be used as a line receivers which will receive slow input signals. All inputs are equipped with protection circuits against static discharge or transient excess voltage.

3. Features

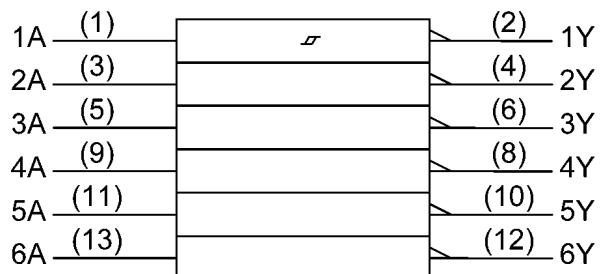
- (1) Wide operating temperature range: $T_{opr} = -40$ to 125 °C (Note 1)
- (2) High speed: $t_{pd} = 5.3$ ns (typ.) at $V_{CC} = 5.0$ V
- (3) Low power dissipation: $I_{CC} = 4.0$ μ A (max) at $T_a = 25$ °C
- (4) Output current: $|I_{OH}|/I_{OL} = 24$ mA (min) ($V_{CC} = 4.5$ V)
- (5) Balanced propagation delays: $t_{PLH} \approx t_{PHL}$
- (6) Wide operating voltage range: $V_{CC(opr)} = 2.0$ V to 5.5 V
- (7) Pin and function compatible with 74F14


Note 1: Operating Range spec of $T_{opr} = -40$ °C to 125 °C is applicable only for the products which manufactured after July 2020.

4. Packaging

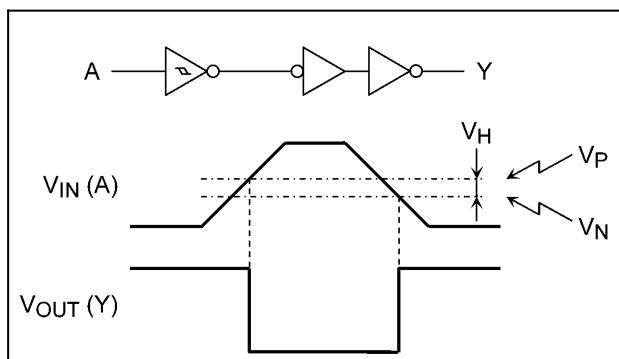

Start of commercial production
2020-07

5. Pin Assignment



(top view)

6. Marking


7. IEC Logic Symbol

8. Truth Table

A	Y
L	H
H	L

9. System Diagram, Waveform

10. Absolute Maximum Ratings (Note)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V_{CC}		-0.5 to 7.0	V
Input voltage	V_{IN}		-0.5 to $V_{CC} + 0.5$	V
Output voltage	V_{OUT}		-0.5 to $V_{CC} + 0.5$	V
Input diode current	I_{IK}		± 20	mA
Output diode current	I_{OK}		± 50	mA
Output current	I_{OUT}		± 50	mA
V_{CC} /ground current	I_{CC}		± 150	mA
Power dissipation	P_D	(Note 1)	180	mW
Storage temperature	T_{stg}		-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: 180 mW in the range of $T_a = -40$ to 85 °C. From $T_a = 85$ to 125 °C a derating factor of -3.25 mW/°C shall be applied until 50 mW.

11. Operating Ranges (Note)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V_{CC}		2.0 to 5.5	V
Input voltage	V_{IN}		0 to V_{CC}	V
Output voltage	V_{OUT}		0 to V_{CC}	V
Operating temperature	T_{opr}	(Note1)	-40 to 125	°C

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either V_{CC} or GND.

Note1: Operating Range spec of $T_{opr} = -40$ °C to 125 °C is applicable only for the products which manufactured after July 2020.

12. Electrical Characteristics

12.1. DC Characteristics (Unless otherwise specified, $T_a = 25^\circ\text{C}$)

Characteristics	Symbol	Test Condition		V_{CC} (V)	Min	Typ.	Max	Unit
Positive threshold voltage	V_P	—		3.0	—	—	2.2	V
				4.5	—	—	3.2	
				5.5	—	—	3.9	
Negative threshold voltage	V_N	—		3.0	0.5	—	—	V
				4.5	0.9	—	—	
				5.5	1.1	—	—	
Hysteresis voltage	V_H	—		3.0	0.3	—	1.2	V
				4.5	0.4	—	1.4	
				5.5	0.5	—	1.6	
High-level output voltage	V_{OH}	$V_{IN} = V_{IL}$	$I_{OH} = -50 \mu\text{A}$	2.0	1.9	2.0	—	V
				3.0	2.9	3.0	—	
				4.5	4.4	4.5	—	
			$I_{OH} = -4 \text{ mA}$	3.0	2.58	—	—	
			$I_{OH} = -24 \text{ mA}$	4.5	3.94	—	—	
Low-level output voltage	V_{OL}	$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu\text{A}$	2.0	—	0.0	0.1	V
				3.0	—	0.0	0.1	
				4.5	—	0.0	0.1	
			$I_{OL} = 12 \text{ mA}$	3.0	—	—	0.36	
			$I_{OL} = 24 \text{ mA}$	4.5	—	—	0.36	
Input leakage current	I_{IN}	$V_{IN} = V_{CC}$ or GND		5.5	—	—	± 0.1	μA
Quiescent supply current	I_{CC}	$V_{IN} = V_{CC}$ or GND		5.5	—	—	4.0	μA

12.2. DC Characteristics (Unless otherwise specified, $T_a = -40$ to 85 °C)

Characteristics	Symbol	Test Condition		Note	V_{CC} (V)	Min	Max	Unit
Positive threshold voltage	V_P	—			3.0	—	2.2	V
					4.5	—	3.2	
					5.5	—	3.9	
Negative threshold voltage	V_N	—			3.0	0.5	—	V
					4.5	0.9	—	
					5.5	1.1	—	
Hysteresis voltage	V_H	—			3.0	0.3	1.2	V
					4.5	0.4	1.4	
					5.5	0.5	1.6	
High-level output voltage	V_{OH}	$V_{IN} = V_{IL}$	$I_{OH} = -50$ μ A		2.0	1.9	—	V
					3.0	2.9	—	
					4.5	4.4	—	
			$I_{OH} = -4$ mA		3.0	2.48	—	
			$I_{OH} = -24$ mA		4.5	3.80	—	
Low-level output voltage	V_{OL}	$V_{IN} = V_{IH}$	$I_{OL} = 50$ μ A		2.0	—	0.1	V
					3.0	—	0.1	
					4.5	—	0.1	
			$I_{OL} = 12$ mA		3.0	—	0.44	
			$I_{OL} = 24$ mA		4.5	—	0.44	
Input leakage current	I_{IN}	$V_{IN} = V_{CC}$ or GND			5.5	—	± 1.0	μ A
					5.5	—	40.0	
Quiescent supply current	I_{CC}	$V_{IN} = V_{CC}$ or GND			5.5	—	—	μ A

Note 1: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested within a 10 ms maximum duration.

12.3. DC Characteristics (Note) (Unless otherwise specified, $T_a = -40$ to 125 °C)

Characteristics	Symbol	Test Condition		Note	V_{CC} (V)	Min	Max	Unit
Positive threshold voltage	V_P	—			3.0	—	2.2	V
					4.5	—	3.2	
					5.5	—	3.9	
Negative threshold voltage	V_N	—			3.0	0.5	—	V
					4.5	0.9	—	
					5.5	1.1	—	
Hysteresis voltage	V_H	—			3.0	0.3	1.2	V
					4.5	0.4	1.4	
					5.5	0.5	1.6	
High-level output voltage	V_{OH}	$V_{IN} = V_{IL}$	$I_{OH} = -50 \mu A$		2.0	1.9	—	V
					3.0	2.9	—	
					4.5	4.4	—	
			$I_{OH} = -4 \text{ mA}$		3.0	2.48	—	
			$I_{OH} = -24 \text{ mA}$		4.5	3.70	—	
Low-level output voltage	V_{OL}	$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu A$		2.0	—	0.1	V
					3.0	—	0.1	
					4.5	—	0.1	
			$I_{OL} = 4 \text{ mA}$		3.0	—	0.44	
			$I_{OL} = 24 \text{ mA}$		4.5	—	0.50	
Input leakage current	I_{IN}	$V_{IN} = V_{CC}$ or GND			5.5	—	± 1.0	μA
					5.5	—	80.0	

Note1: This spec indicates the capability of driving 50Ω transmission lines.

One output should be tested within a 10 ms maximum duration.

Note: Operating Range spec of $T_{opr} = -40$ °C to 125 °C is applicable only for the products which manufactured after July 2020.

12.4. AC Characteristics (Unless otherwise specified, $T_a = 25$ °C, Input: $t_r = t_f = 3$ ns)

Characteristics	Symbol	Note	Test Condition	V_{CC} (V)	Min	Typ.	Max	Unit
Propagation delay time	t_{PLH}, t_{PHL}		$C_L = 50 \text{ pF}$ $R_L = 500 \Omega$	3.3 ± 0.3	—	8.1	13.2	ns
				5.0 ± 0.5	—	6.0	9.7	
Input capacitance	C_{IN}		—	—	5	10	—	pF
Power dissipation capacitance	C_{PD}	(Note 1)	—	—	29	—	—	pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation.

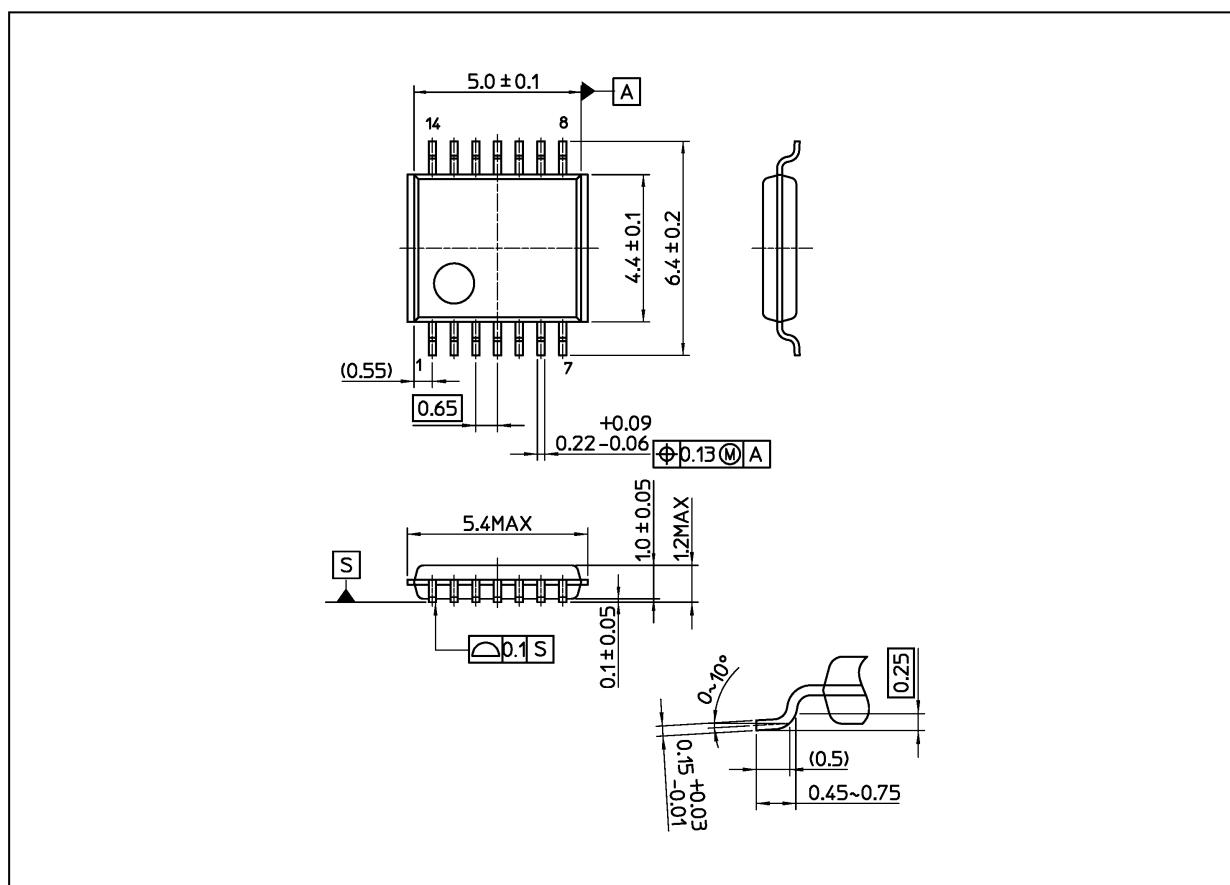
$$I_{CC(\text{opr})} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/6 \text{ (per gate)}$$

12.5. AC Characteristics

(Unless otherwise specified, $T_a = -40$ to 85 °C, Input: $t_r = t_f = 3$ ns)

Characteristics	Symbol	Test Condition	V_{CC} (V)	Min	Max	Unit
Propagation delay time	t_{PLH}, t_{PHL}	$C_L = 50 \text{ pF}$ $R_L = 500 \Omega$	3.3 ± 0.3	1.0	15.0	ns
			5.0 ± 0.5	1.0	11.0	
Input capacitance	C_{IN}	—	—	10	—	pF

12.6. AC Characteristics (Note)


(Unless otherwise specified, $T_a = -40$ to 125 °C, Input: $t_r = t_f = 3$ ns)

Characteristics	Symbol	Test Condition	V_{CC} (V)	Min	Max	Unit
Propagation delay time	t_{PLH}, t_{PHL}	$C_L = 50$ pF $R_L = 500$ Ω	3.3 ± 0.3	1.0	16.2	ns
			5.0 ± 0.5	1.0	11.9	
Input capacitance	C_{IN}	—	—	10	pF	

Note: Operating Range spec of $T_{opr} = -40$ °C to 125 °C is applicable only for the products which manufactured after July 2020.

Package Dimensions

Unit: mm

Weight: 0.06 g (typ.)

Package Name(s)
Nickname: TSSOP14