IW4066B # **Quad Bilateral Switch High-Voltage Silicon-Gate CMOS** The IW4066B is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. In addition, the on-state resistance is relatively constant over the full input-signal range. The IW4066B consists of four independent bilateral switches. A single control signal is required per switch. Both the p and the n device in a given switch are biased on or off simultaneously by the control signal.(As show in Fig.1.)The well of the n-channel device on each switch is either tied to the input when the switch is on or to GND when the switch is off. This configuration eliminates the variation of the switch-transistor threshold voltage with input signal, and thus keeps the on-state resistance low over the full operating-signal range. The advantages over single-channel switches include peak inputsignal voltage swings equal to the full supply voltage, and more constant on-state impedance over the input-signal range. - Operating Voltage Range: 3.0 to 18 V - Maximum input current of 1 μA at 18 V over full package-temperature - range; 100 nA at 18 V and 25°C - Noise margin (over full package temperature range): 1.0 V min @ 5.0 V supply 2.0 V min @ 10.0 V supply 2.5 V min @ 15.0 V supply # LOGIC DIAGRAM $PIN 14 = V_{CC}$ PIN 7 = GND ### PIN ASSIGNMENT #### **FUNCTION TABLE** | On/Off
Control Input | State of
Analog Switch | |-------------------------|---------------------------| | L | Off | | Н | On | # **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------|---|-----------------------|------| | V_{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +20 | V | | V_{IN} | DC Input Voltage (Referenced to GND) | -0.5 to V_{CC} +0.5 | V | | V_{OUT} | DC Output Voltage (Referenced to GND) | -0.5 to V_{CC} +0.5 | V | | I_{IN} | DC Input Current, per Pin | ±10 | mA | | P_{D} | Power Dissipation in Still Air, Plastic DIP+
SOIC Package+ | 750
500 | mW | | P_D | Power Dissipation per Output Transistor | 100 | mW | | Tstg | Storage Temperature | -65 to +150 | °C | | $T_{ m L}$ | Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) | 260 | °C | ^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. SOIC Package: : - 7 mW/°C from 65° to 125°C #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | |-------------------|--|-----|----------|------| | V_{CC} | DC Supply Voltage (Referenced to GND) | 3.0 | 18 | V | | V_{IN}, V_{OUT} | DC Input Voltage, Output Voltage (Referenced to GND) | 0 | V_{CC} | V | | T_A | Operating Temperature, All Package Types | -55 | +125 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \le (V_{IN}) \le V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. ⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C # $\begin{picture}(200,0) \put(0,0){D} \put(0,0$ | | | | V _{CC} | Guar | anteed Li | mit | | |--------------------|--|--|-----------------------|-----------------------|-------------------------------|------------------------|------| | Symbol | Parameter | Test Conditions | V | ≥-55°C | 25
°C | ≤125
°C | Unit | | V _{IH} | Minimum High-Level
Voltage ON/Off
Control Inputs | R _{ON} = Per Spec | 5.0
10
15 | | 3.5(Min)
7(Min)
11(Min) | | V | | V _{IL} | Minimum Low-Level
Voltage ON/Off
Control Inputs | R _{ON} = Per Spec | 5.0
10
15 | 1
2
2 | 1
2
2 | 1
2
2 | V | | $I_{\rm IN}$ | Maximum Input
Leakage Current,
ON/OFF Control
Inputs | $V_{IN} = V_{CC}$ or GND | 18 | ±0.1 | ±0.1 | ±1.0 | μΑ | | I_{CC} | Maximum Quiescent
Supply Current
(per Package) | $V_{IN} = V_{CC}$ or GND | 5.0
10
15
20 | 0.25
0.5
1
5 | 0.25
0.5
1
5 | 7.5
15
30
150 | μΑ | | R _{ON} | Maximum "ON"
Resistance | $\begin{aligned} &V_{C} \!\!= V_{CC} \\ &R_{L} \!\!= \!\! 10 \text{ k}\Omega \text{ returned} \\ &\frac{V_{CC} \!\!- \!$ | 5.0
10
15 | 800
310
200 | 1050
400
240 | 1300
550
320 | Ω | | $\Delta R_{ m ON}$ | Maximum Difference
in "ON" Resistance
Between Any Two
Channels in the Same
Package | $V_C = V_{CC}$ $R_L = 10 \text{ k}\Omega$ | 5.0
10
15 | -
-
- | 15
10
5 | | Ω | | $I_{ m OFF}$ | Maximum Off-
Channel Leakage
Current, Any One
Channel | $egin{array}{l} V_{C} = 0 \ V \\ V_{IS} = 18 \ V; \ V_{OS} = 0 \ V \\ V_{IS} = 0 \ V; \ V_{OS} = 18 V \end{array}$ | 18 | ±0.1 | ±0.1 | ±1.0 | μΑ | | I _{ON} | Maximum On-
Channel Leakage
Current, Any One
Channel | V_{C} = 0 V
V_{IS} =18 V; V_{OS} = 0 V
V_{IS} =0 V; V_{OS} = 18V | 18 | ±0.1 | ±0.1 | ±1.0 | μА | # **AC ELECTRICAL CHARACTERISTICS** (C_L =50pF, R_L =200k Ω , Input t_r = t_f =20 ns) | | | V_{CC} | Gua | aranteed L | imit | | |--------------------------------------|--|-----------------|----------------|------------------|-----------------|------| | Symbol | Parameter | V | ≥-55°C | 25°C | ≤125°C | Unit | | t _{PLH} , t _{PHL} | Maximum Propagation Delay, Analog Input to
Analog Output (Figure 2) | 5.0
10
15 | 40
20
15 | 40
20
15 | 80
40
30 | ns | | $t_{PLZ}, t_{PHZ}, t_{PZL}, t_{PZH}$ | Maximum Propagation Delay, ON/OFF
Control to Analog Output (Figure 3) | 5.0
10
15 | 70
40
30 | 70
40
30 | 140
80
60 | ns | | С | Maximum Capacitance ON/OFF Control Input Control Input = GND Analog I/O Feedthrough | - | | 15
7.5
0.6 | | pF | # ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) | | | | V _{CC} | Limit* | | |--------|--|--|-----------------|---------------|------| | Symbol | Parameter | Test Conditions | V | 25°C | Unit | | THD | Total Harmonic
Distortion | $V_{C} = V_{CC}$, GND = -5 V
$R_{L} = 10 \ k\Omega$, $f_{IS} = 1 \ kHz$ sine wave | 5 | 0.4 | % | | BW | Maximum On-
Channel Bandwidth
or Minimum
Frequency Response | $V_C = V_{CC}$, $GND = -5 \ V$ $R_L = 1 \ k\Omega$ | 5 | 40 | MHz | | BW | Maximum On-
Channel Bandwidth
or Minimum
Frequency Response | $V_{C} = GND$, $V_{IS} = 5~V$ $R_{L} = 1~k\Omega$ | 10 | 1 | MHz | | BW | Maximum On-
Channel Bandwidth
or Minimum
Frequency Response | $\begin{aligned} &V_{C}\left(A\right) = V_{CC} = 5 \ V \\ &V_{C}\left(B\right) = GND = -5 \ V \\ &V_{IS}\left(A\right) = 5 \ V_{P-P} \ ,50 \ \Omega \ source \\ &R_{L} = 1 \ k\Omega \end{aligned}$ | 5 | 8 | MHz | | - | Cross talk (Control
Input to Signal
Output) | $\begin{aligned} V_{C} &= 10 \text{ V} \\ t_{r}, t_{f} &= 20 \text{ ns} \\ R_{L} &= 10 \text{ k}\Omega \end{aligned}$ | 10 | 50 | mV | | - | Maximum Control
Input Repetition Rate | $\begin{aligned} V_{IS} &= V_{CC}, R_L = 1 k\Omega \\ C_L &= 50 pF \\ V_C &= 10 V (square \ wave \ centered \ on \ 5 V) \\ t_r, t_f &= 20 ns, \\ V_{OS} &= 1/2 V_{OS} @1 kHz \end{aligned}$ | 5
10
15 | 6
9
9.5 | MHz | ^{*} Guaranteed limits not tested. Determined by design and verified by qualification. | | | Switch Input | | | Switch (| Output, | |-------------|-------------|----------------------|---------------|---------------|----------|---------| | | | I _{IS} (mA) | | | V_{OS} | (V) | | $V_{CC}(V)$ | $V_{IS}(V)$ | -55 °C | +25 °C | +125 °C | Min | Max | | 5
5 | 0
5 | 0.64
-0.64 | 0.51
-0.51 | 0.36
-0.36 | -
4.6 | 0.4 | | 10
10 | 0
10 | 1.6
-1.6 | 1.3
-1.3 | 0.9
-0.9 | -
9.5 | 0.5 | | 15
15 | 0
15 | 4.2
-4.2 | 3.4
-3.4 | 2.4
-2.4 | 13.5 | 1.5 | Figure 1. Schematic diagram of 1 of 4 identical switches and its associated control circuitry. Figure 2. Switching Waveforms Figure 3. Switching Waveforms # **EXPANDED LOGIC DIAGRAM** (1/4 of the Device) | Control | Switch | |--------------|--------| | GND = L | OFF | | $V_{CC} = H$ | ON | #### N SUFFIX PLASTIC DIP (MS - 001AA) #### **NOTES:** 1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side. | Dimensions, mm | | | |----------------|--|--| | MIN | MAX | | | 18.67 | 19.69 | | | 6.10 | 7.11 | | | | 5.33 | | | 0.36 | 0.56 | | | 1.14 | 1.78 | | | 2 | .54 | | | 7 | .62 | | | 0° | 10° | | | 2.92 | 3.81 | | | 7.62 | 8.26 | | | 0.20 | 0.36 | | | 0.38 | | | | | MIN 18.67 6.10 0.36 1.14 2 7 0° 2.92 7.62 0.20 | | # D SUFFIX SOIC (MS - 012AB) ## **NOTES:** - 1. Dimensions A and B do not include mold flash or protrusion. - 2.Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for - B 0.25 mm (0.010) per side. | 1 | | | | | | |---------|----------------|------|--|--|--| | | Dimensions, mm | | | | | | Symbol. | MIN | MAX | | | | | A | 8.55 | 8.75 | | | | | В | 3.80 | 4.00 | | | | | С | 1.35 | 1.75 | | | | | D | 0.33 | 0.51 | | | | | F | 0.40 | 1.27 | | | | | G | 1.3 | 27 | | | | | Н | 5. | 72 | | | | | J | 0° | 8° | | | | | K | 0.10 | 0.25 | | | | | M | 0.19 | 0.25 | | | | | P | 5.80 | 6.20 | | | | | R | 0.25 | 0.50 | | | | | | | | | | |