

3.3-V RS-485 TRANSCEIVERS

FEATURES

- Operates With a 3.3-V Supply
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Optional Driver Output Transition Times for Signaling Rates (1) of 1
 Mbps, 10 Mbps, and 32 Mbps
- Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A
- Bus-Pin Short Circuit Protection From -7 V to 12 V
- Low-Current Standby Mode . . . 1 μA Typical
- Open-Circuit, Idle-Bus, and Shorted-Bus Failsafe Receiver
- Thermal Shutdown Protection
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
SN65HVD10EIN	DIP8L	65HVD10	TUBE	2000pcs/box
SN65HVD11EIN	DIP8L	65HVD11	TUBE	2000pcs/box
SN65HVD12EIN	DIP8L	65HVD12	TUBE	2000pcs/box
SN65HVD10EIM/TR	SOP8L	65HVD10	REEL	2500pcs/reel
SN65HVD11EIM/TR	SOP8L	65HVD11	REEL	2500pcs/reel
SN65HVD12EIM/TR	SOP8L	65HVD12	REEL	2500pcs/reel

DESCRIPTION

The SN65HVD10, SN65HVD11, and SN65HVD12, combine a 3-state differential line driver and differential input line receiver that operate with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993.

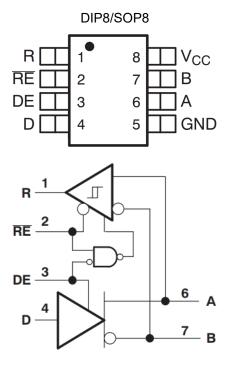
These differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines.

The drivers and receivers have active-high and active-low enables respectively, that can be externally connected together to function as direction control.

Very low device standby supply current can be achieved by disabling the driver and the receiver.

The driver differential outputs and receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

1 / 17


APPLICATIONS

- Digital Motor Control
- Utility Meters
- Chassis-to-Chassis Interconnects
- Electronic Security Stations

- Industrial Process Control
- Building Automation
- Point-of-Sale (POS) Terminals and Networks

Pin Connection

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

			UNIT			
V _{CC} Supply voltage range	је		–0.3 V to 6 V			
Voltage range at A or B			–9 V to 14 V			
Input voltage range at D,	DE, R or RE	-0.5 V to V _{CC} + 0.5 V				
Voltage input range, trans	–50 V to 50 V					
Io Receiver output cur	Io Receiver output current					
	Livers are less divines adai(3)	A, B, and GND	±16 kV			
Electrostaticdischarge	Human body model ⁽³⁾	All pins	±4 kV			
	Charged-device model ⁽⁴⁾	All pins charge	±1 kV			
Continuous total power d	issipation		See Dissipation Rating Table			
Electrical Fast Transient/	Burst ⁽⁵⁾	A, B, and GND	±4 kV			
T _J Junction temperatu	re		170°C			

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.
- (5) Tested in accordance with IEC 61000-4-4.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range unless otherwise noted

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3		3.6		
V _I or V _{IC}	Voltage at any bus terminal (separately or common mode)	_7(1)		12		
VIH	High-level input voltage	D, DE, RE	2		VCC	V	
VIL	Low-level input voltage	D, DE, RE	0		8.0		
VID	Differential input voltage	Figure 7	-12		12		
ЮН	High level output ourrent	Driver			-60	A	
100	High-level output current	Receiver			-8	mA	
loi	Lave lavel autout accoment	Driver			60	mA	
lOL	Low-level output current	Receiver			8		
RL	Differential load resistance		54	60		Ω	
CL	Differential load capacitance		50			pF	
		HVD10			32		
Signaling r	ate	HVD11			10	Mbps	
		HVD12			1		
T.I. (2)	Junction temperature				145	°C	

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST	MIN	TYP ⁽¹⁾	MAX	UNIT	
VIK	Input clamp voltage		I _I = -18 mA		-1.5			٧
			I _O = 0	2		VCC		
V _{OD}	Differential output voltage ⁽²⁾		$R_L = 54 \Omega$, Se	e Figure 1	1.5			V
			$V_{\text{test}} = -7 \text{ V to}$	12 V, See Figure 2	1.5			
$\Delta V_{\text{OD}} $	Change in magnitude of differentia	l outputvoltage	See Figure 1	and Figure 2	-0.2		0.2	V
VOC(PP)	Peak-to-peak common-mode outpu	ut voltage				400		mV
Voc(ss)	Steady-state common-mode outpu	t voltage	See Figure 3		1.4		2.5	V
ΔV _{OC} (SS)	Change in steady-state common-molecular voltage	See Figure 3		-0.05		0.05	٧	
loz	High-impedance output current		See receiver i					
li	I lament accomment				-100	0		μA
II .	Input current	DE			0		100	μΛ
los	Short-circuit output current		–7 V ≤ V ₀ ≤ 1	-250		250	mA	
C _(OD)	Differential output capacitance		V _{OD} = 0.4 sin (4E6πt) + 0.5 V,			16		pF
-(00)	Differential output capacitance	DE at 0 V	10			Pi		
			RE at V _{CC} , D & DE at V _{CC} ,No load	Receiver disabled and driver enabled		9	15.5	mA
ICC	Supply current		RE at V _{CC} , D at V _{CC} , DE at 0 V, No load	Receiver disabled and driver disabled (standby)		1	5	μА
		RE at 0 V, D & DE at Vcc,No load Receiver enabled and driver enabled			9	15.5	mA	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

⁽²⁾ See thermal characteristics table for information regarding this specification.

⁽²⁾ For TA > 85°C, VCC is ±5%.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
	Dronagation delay time	HVD10		5	8.5	16		
tPLH	Propagation delay time, low-to-high-level output	HVD11		18	25	40	ns	
	low-to-nigh-level output	HVD12		135	200	300		
	Dropogation delay time	HVD10		5	8.5	16		
tPHL	Propagation delay time, high-to-low-level output	HVD11		18	25	40	ns	
	riigii-to-low-level output	HVD12	-	135	200	300		
		HVD10	$R_L = 54 \Omega$, $C_L = 50 pF$,	3	4.5	10		
t _r	Differential output signal rise time	HVD11	See Figure 4	10	20	30	ns	
		HVD12	Occ riguic 4	100	170	300		
		HVD10		3	4.5	10		
t _f	Differential output signal fall time	HVD11		10	20	30	ns	
		HVD12		100	170	300		
		HVD10				1.5	ns	
^t sk(p)	Pulse skew $(t_{PHL} - t_{PLH})$	HVD11				2.5		
		HVD12				7		
		HVD10				6		
^t sk(pp) (2)	Part-to-part skew	HVD11				11	ns	
		HVD12				100		
	Propagation delay time,	HVD10	4		31			
tPZH	high-impedance-to-high-level output	HVD11			55 300			
	mgn-impedance to-nigh-level output		R_L = 110 Ω, RE at 0 V,					
	Propagation delay time,	HVD10	See Figure 5	25				
tPHZ	high-level-to-high-impedance output	HVD11	4	55			ns	
	mg// lover to mg// impodance output	HVD12				300		
	Propagation delay time,	HVD10				26		
tPZL	high-impedance-to-low-level output	HVD11				55	ns	
	- Ing. Impode to to low lover edipat		R_L = 110 Ω, RE at 0 V,			300		
	Propagation delay time,	HVD10	See Figure 6			26		
t _{PLZ}	low-level-to-high-impedance output	HVD11 HVD12	-	75			ns	
	10W-10VOF to High Impedance output					400		
tPZH	Propagation delay time, standby-to-high-leve	el output	R_L = 110 Ω, RE at 3 V, See Figure 5			6	μs	
tPZL	Propagation delay time, standby-to-low-leve	l output	R_L = 110 Ω, RE at 3 V, See Figure 6			6	μs	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	I _O = -8 mA				-0.065	-0.01	
VIT-	Negative-going input thresholdvoltage	I _O = 8 mA			-0.2	-0.1		V
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})					35		mV
VIK	Enable-input clamp voltage	I _I = -18 mA			-1.5			V
Vон	High-level output voltage	V _{ID} = 200 mV,	$I_{OH} = -8 \text{ mA},$	See Figure 7	2.4			V
VOL	Low-level output voltage	V _{ID} = -200 mV,	I _{OL} = 8 mA,	See Figure 7			0.4	V
loz	High-impedance-state output current	$V_0 = 0$ or V_{CC}	RE at V _{CC}		-1		1	μA
		V _A or V _B = 12 \	/			0.05	0.11	
		$V_A ext{ or } V_B = 12 ext{ V}, V_{CC} = 0 ext{ V}$ $V_A ext{ or } V_B = -7 ext{ V}$ $V_A ext{ or } V_B = -7 ext{ V}, V_{CC} = 0 ext{ V}$		HVD11, HVD12,		0.06	0.13	
				Other input at 0 V	-0.1	-0.05		mA
١.	Due invest comment				-0.05	-0.04		
l lı	I _I Bus input current	V _A or V _B = 12 \	/			0.2	0.5	
		V_A or $V_B = 12 V$, $V_{CC} = 0 V$		HVD10,		0.25	0.5	^
		V_A or $V_B = -7$	/	Other input at 0 V	-0.4	-0.2		mA
		V_A or $V_B = -7$	V, V _{CC} = 0 V		-0.4	-0.15		
lіН	High-level input current, RE	V _{IH} = 2 V			-30		0	μA
ΙΙL	Low-level input current, RE	V _{IL} = 0.8 V			-30		0	μA
CID	Differential input capacitance	V _{ID} = 0.4 sin (4	E6πt) + 0.5 V, D	E at 0 V		15		pF
		RE at 0 V, D & DE at 0 V, No load	Receiver enab	led and driverdisabled		4	8	mA
ICC	Supply current	RE at V _{CC} , D at V _{CC} , DE at 0 V, No load	Receiver disab			1	5	μА
		RE at 0 V, D & DE at V _{cc} , No load	Receiver enab		9	15.5	mA	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
t _{PLH} Propa	agation delay time, low-to-high-level output	HVD10		12.5	20	25	ns	
t _{PHL} Propa	agation delay time, high-to-low-level output	HVD10		12.5	20	25	IIS	
t _{PLH} Propa	agation delay time, low-to-high-level output	HVD11 HVD12	V _{ID} = -1.5 V to 1.5 V,	30	55	70	ns	
t _{PHL} Propa	agation delay time, high-to-low-level output	HVD11 HVD12	C _L = 15 pF, See Figure 8	30	55	70	ns	
		HVD10				1.5		
t _{sk(p)} Puls	e skew (t _{PHL} - t _{PLH})	HVD11				4	ns	
		HVD12				4		
		HVD10				8		
t _{sk(pp)} (2)	Part-to-part skew	HVD11				15	ns	
		HVD12				15		
t _r	Output signal rise time		C _L = 15 pF,	1	2	5		
t f	Output signal fall time		See Figure 8	1	2	5	ns	
t _{PZH} (1)	Output enable time to high level					15		
t _{PZL} (1)	Output enable time to low level		C _L = 15 pF, DE at 3 V,			15		
t _{PHZ}	Output disable time from high level		See Figure 9			20	ns	
t _{PLZ}	Output disable time from low level				15			
t _{PZH} (2)	Propagation delay time, standby-to-high-level out	tput	C _L = 15 pF, DE at 0,			6		
t _{PZL} (2)	Propagation delay time, standby-to-low-level outp	out	See Figure 10			6	μs	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply

PARAMETER MEASUREMENT INFORMATION

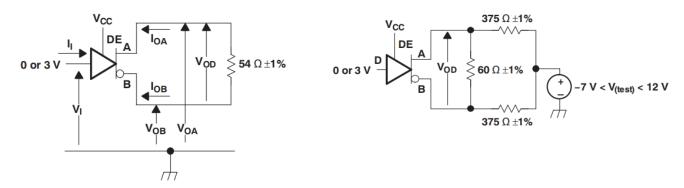
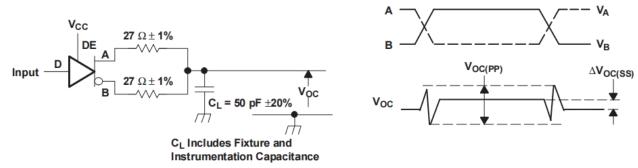
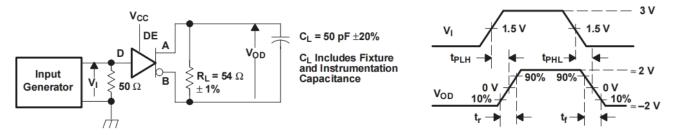



Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions

Figure 2. Driver VOD With Common-Mode Loading
Test Circuit


⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

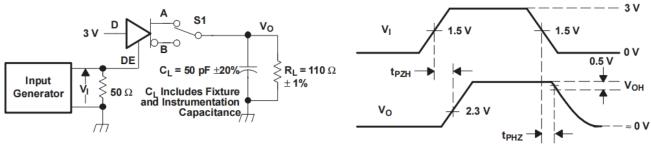

Input: PRR = 500 kHz, 50% Duty Cycle, t_r <6ns, t_f <6ns, Z_O = 50 Ω

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

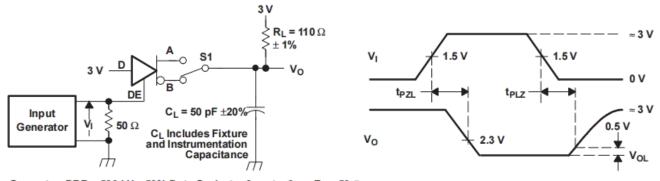

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 4. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm r}$ <6 ns, $t_{\rm f}$ <6 ns, $Z_{\rm o}$ = 50 Ω

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

2016 JAN

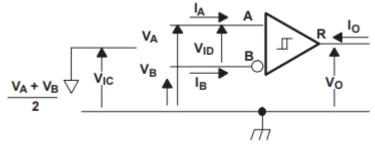
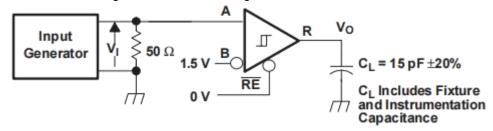



Figure 7. Receiver Voltage and Current Definitions

Generator: PRR = 500 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Zo = 50 Ω

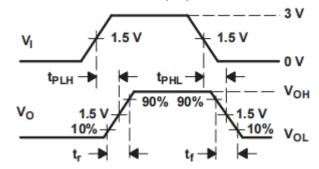
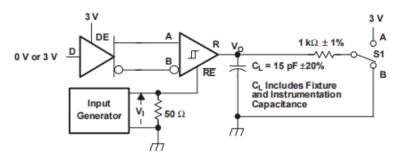



Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

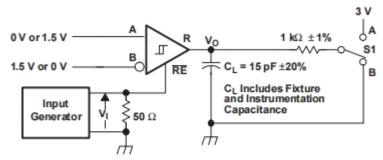

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm f}$ <6 ns, $t_{\rm f}$ <6 ns, $Z_{\rm o}$ = 50 Ω

Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

8 / 17

Generator: PRR = 100 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_0 = 50 Ω

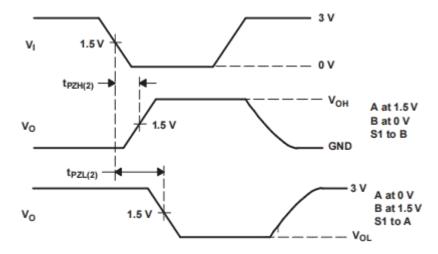
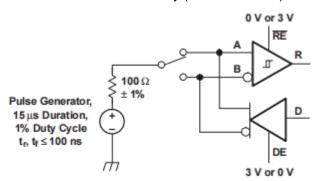



Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Test Circuit, Transient Over Voltage Test

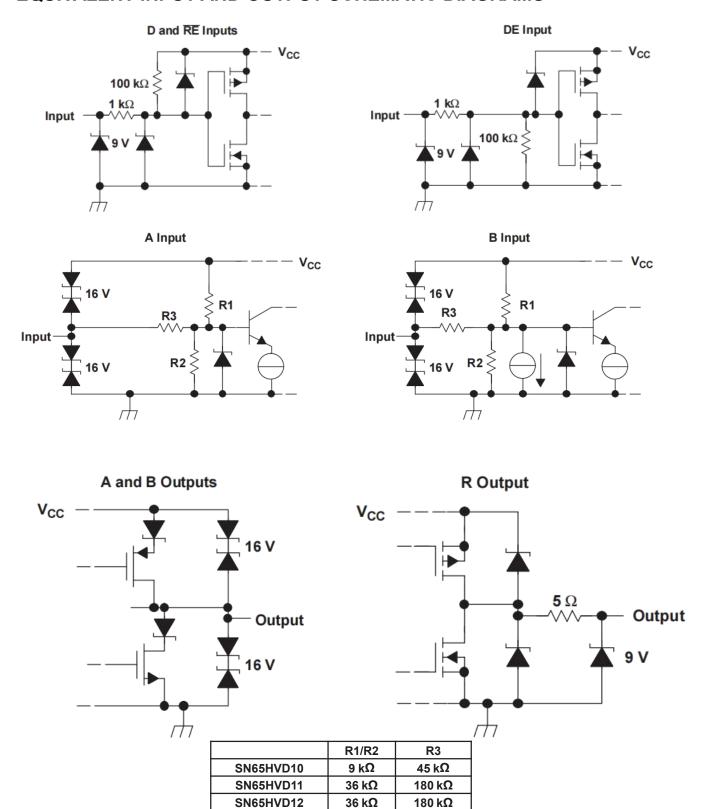
PARAMETER MEASUREMENT INFORMATION (continued)

FUNCTION TABLES

Table 1. DRIVER(1)

		OUTPUTS					
INPU TD	ENABLE DE	A	В				
Н	Н	Н	L				
L	Н	L	Н				
X	L	Z	Z				
Open	Н	Н	L				

⁽¹⁾ H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate


Table 2. RECEIVER(1)

DIFFERENTIAL INPUTSV _{ID} = V _A - V _B	EN <u>AB</u> LERE	OUTPUTR
V _{ID} ≤ -0.2 V	L	L
-0.2 V < V _{ID} < -0.01 V	L	?
-0.01 V ≤ V _{ID}	L	Н
X	Н	Z
Open Circuit	L	Н
Short circuit	L	Н

⁽¹⁾ H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

TYPICAL CHARACTERISTICS

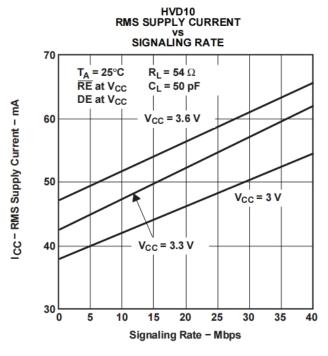
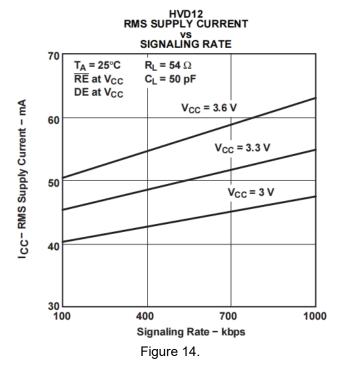
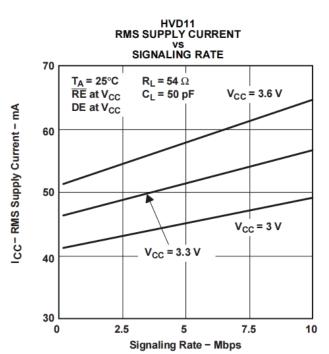
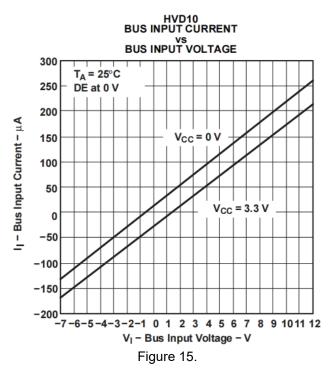
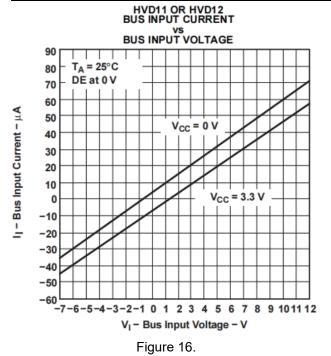
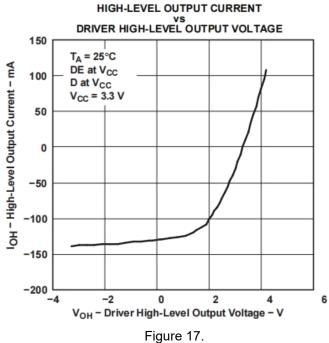
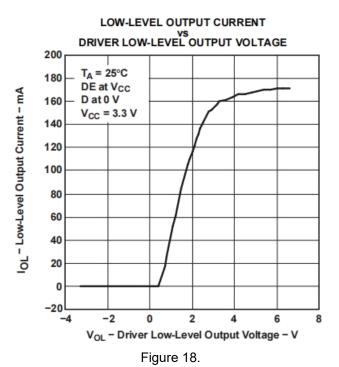
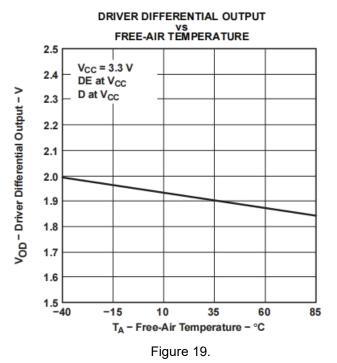
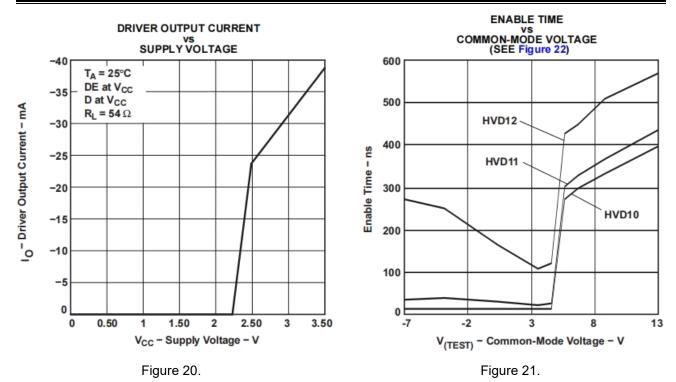



Figure 12.


Figure 13.



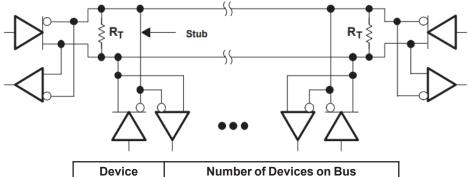


375 $\Omega \pm 1\%$ -7 V < V_(TEST) < 12 V D **60** Ω V_{OD} 0 or 3 V ±1% z $\textbf{375}~\Omega \pm \textbf{1\%}$ Input 50 Ω Generator 50% t_{pZH}(diff) V_{OD} (high) 1.5 V

Figure 22. Driver Enable Time From DE to VOD

-1.5 V

V_{OD} (low)


The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.

 $t_{pZL}(diff)$

0 V

APPLICATION INFORMATION

Device	Number of Devices on Bus
HVD10	64
HVD11	256
HVD12	256

NOTE: The line should be terminated at both ends with its characteristic impedance (RT = ZO). Stub lengths off the main line should be kept as short as possible.

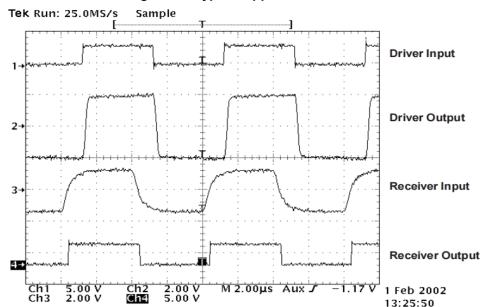
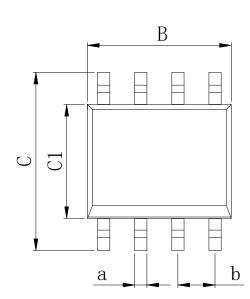
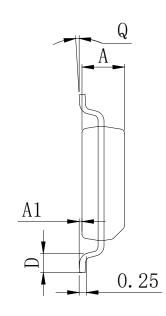


Figure 23. Typical Application Circuit

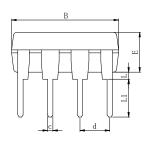
Figure 24. HVD12 Input and Output Through 2000 Feet of Cable

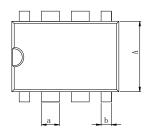
An example application for the HVD12 is illustrated in Figure 23. Two HVD12 transceivers are used to communicate data through a 2000 foot (600 m) length of Commscope 5524 category 5e+ twisted pair cable. The bus is terminated at each end by a $100-\Omega$ resistor, matching the cable characteristic impedance. Figure 24 illustrates operation at a signaling rate of 250 kbps.


LOW-POWER STANDBY MODE


When both the driver and receiver are disabled (DE low and RE high) the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.

Physical Dimensions


SOP8



Dimensions In Millimeters(SOP8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 650	

DIP8

Dimensions In Millimeters(DIP8)												
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d	
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC	
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50		

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.