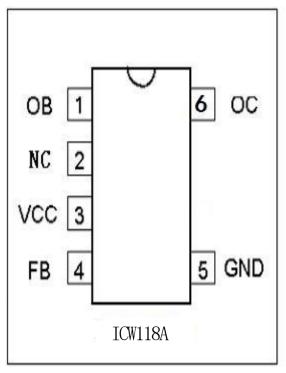
器件参数表 DataSheet

发行日期: 2018.11.15 文档编号: SPEC118A1115 版本:A

ICW118A【开关电源控制器集成电路】



合肥艾创微电子科技有限公司

概述

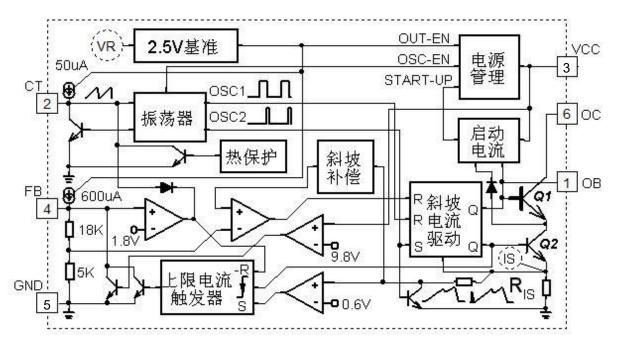
ICW118A 是一款高性能电流模式 PWM 控制器。专为高性价比 AC/DC 转换器设计。 在85V-265V的宽电压范围内提供高达 6W 的连续输出功率。优化的高合理性的电路设 计结合高性能价格比的双极型 制作工艺, 最大程度上节约了产品的整体 成本。该电源 控制器可工作于典型的反激 电路拓扑中, 构成简洁的 AC/DC 转换器。IC 内部的启 动电路被设计成一种独特的电流吸入方式, 可利用功率开关管本身的 放大作用完成启动, 这显著地降低了启动 电阻的功率消耗; 而 在输出功率较小时 IC 将自动降低工作频 率,从而实现了极低的待机功耗。在功率 管截止时,内部电 路将功率管反向偏置,直接 利用了双极性 晶体管的 CB 高耐压特性,大幅 提高功率管的耐电压能力直到 700V 的 高压,这保证了功率管的安全。IC 内部还 提供了完善的防过载防饱和功能, 可实时防 范过载、变压器饱和、输出短路等异常状况, 提高了电源的可靠性。

ICW118A 提供小体积的 SOP6 封装

特点

- 内置 700V 高压功率开关管, 极少的外围器件
- 锁存脉宽调制,逐脉冲限流检测
- 低输出降频功能,无输出功耗可低于 0.25W
- 内建斜坡与反馈补偿功能
- 独立上限电流检测控制器,实时处理控制器的过流、过载
- 关断周期发射极偏压输出,提高了功率管的耐压
- 内置具有温度补偿的电流限制电阻,精确电流限制
- 内置热保护电路
- 利用开关功率管的放大作用完成启动,启动电阻的功耗减少 10 倍以上
- 极少的外围元器件
- 低启动和工作电流
- VCC 过压自动限制
- 宽电压输出功率可达 3.8W, 窄电压输出功率可达 5W 以上

应用领域


- 便携式适配器 (如旅行充电器、外置电源盒等)
- 轻巧时尚型移动设备供电器(如 MP3、WALKMAN 等)

引脚功能描述

管 脚	符 号	管 脚 定 义 描 述
1	ОВ	功率管基极,启动电流输入,外接启动电阻
2	NC	悬空脚
3	VCC	供电脚
4	FB	反馈脚
5	GND	接地脚
6	ОС	输出脚,接开关变压器

^{*:} PCB Layout 时应将 Pin5 与 Pin6 之间保留 2mm 以上的安全距离,避免产生放电现象。

内部电路参考框图

推荐工作条件

项目	最小	典型	最大	单位
供电电压, VCC	4.8	5.5	9.0	V
引脚输入电压	-0.3	-	Vcc	V
峰值反向电压	-	-	550	V
峰值开关电流	-	-	230	mA
振荡频率	55	65	70	KHz
工作温度	-40		125	$^{\circ}$ C

极限参数

供电电压 VCC······V
引脚输入电压····································
OC集电极承受电压······
峰值开关电流
总耗散功率······1000mW
工作温度范围 · · · · · · · · · · · · · · · · · · ·
储存温度范围 · · · · · · · · · · · · · · · · · · ·
焊接温度····································

电气参数 Ta=25℃, Vcc=5.5-7.5V)

(输出部分

项目	测试条件	测试条件		典型	最大	单位
开关管最大耐压	loc=10mA	ICW118A	700	-	-	V
开通饱和压降	loc=250mA	ICW118A	-	-	1	V
关断延时	loc=250mA	loc=250mA		-	700	ns
输出上升时间	CL=1nF	CL=1nF		-	75	ns
输出下降时间	CL=1nF	CL=1nF		-	75	ns
输出限制电流	Tj=0-100℃		210	230	250	mA
OE 钳位电压	OE=0.001-0.29	OE=0.001-0.29A		1.5	-	V

参考部分(内部)

项目	测试条件	最小	典型	最大	单位
参考输出电压	Io=1.0mA	2.4	2.5	2.6	٧
电源调整率	Vcc=5.5-9V	-	2	20	mV
负载调整率	lo=0.1-1.2mA	-	-	3	%

(接上)

项目	测试条件	最小	典型	最大	单位
温度稳定性		-	0.2	-	mV/℃

输出噪声电压	F=10Hz-10KHz	-	-	50	μV
长期稳定性	T=85℃条件下工作 1000h	-	5	-	mV

振荡器部分

项目	测试条件	最小	典型	最大	单位
振荡频率		55	65	70	KHz
频率随电压变化率	Vcc=5.5-9V	-	-	1	%
频率随温度变化率	Ta=0-85℃	-	-	1	%
振荡器振幅(Vp-p)		-	2.2	-	V
振荡器下降沿		-	800	-	ns

反馈部分

项目		测试条件	最小	典型	最大	单位
蝓∧饵疽 ├──	上拉电流		-	0.50	0.60	mA
	下拉电阻		-	30	-	ΚΩ
电源抑制员	ዸ	Vcc=5.5-9V	-	60	70	dB

电流取样部分

项目	测试条件	最小	典型	最大	单位
电流取样门限		0.55	0.60	0.65	٧
防上限电流		0.21	0.23	0.25	Α
电源抑制比		-	60	70	dB
传输延时		-	150	250	ns

脉宽调制部分

项目	测试条件	最小	典型	最大	单位
最大占空比		53	57	61	%
最小占空比		-	-	3.5	%

电源电流

项目	测试条件	最小	典型	最大	单位
启动接受电流		1.6	2.4	3.2	mA
启动静态电流		-	55	80	μA
静态电流	Vcc=8V	-	2.8	-	mA
启动电压		8.6	8.8	9.0	V
振荡器关闭电压		4.0	4.2	4.5	٧
再启动电压		-	3.6	-	V
过压限制门限		9.5	10	10.5	V

原理描述

- 启动阶段,上电时 VR 关闭; FB 上拉电流源关闭; OE 由功率管输入启动电流到 VCC; OB 控制功率管的基极电流,限制功率管集电极电流(即 ICW118A 启动接 受电流),从而保证功率管的安全;在 VCC 电压上升到 8.8V,启动阶段结束,进入正常阶段。
- 正常阶段, VCC 电压应保持在 4.8~9.0V, VR 输出 2.5V 基准; FB 上拉电流源开启; 振荡器输出 OSC1 决定最大占空比,输出 OSC2 试图触发电源进入开周期、及屏 蔽功率管开启电流峰; 若 FB 小于 1.8V (约在 1.2-1.8V 之间)振荡器周期将随之增 加,FB 越小振荡器周期越宽、直至振荡器停振(此特性降低了开关电源的待机功 耗): 若外围反馈试图使 VCC 大于 10V,则内电路反馈到 FB 使 VCC 稳压在 10V (利用此特性可以不采用外围反馈电路,由内电路稳定输出电压,但稳压精度较低); 开周期, OB 为功率管提供基极电流, OE 下拉功率管的发射极到 IS, 而且 OB 采 用斜坡电流驱动(指 OB 开电流是 IS 的函数, 当 IS=0V 时 OB 开电流约 24mA, 然后 OB 开电流随 IS 线性增加, 当 IS 增加到 0.6V 时 OB 开电流约 40mA, 此特性有 效地利用了 OB 的输出电流,降低了 ICW118A 的功耗),若 IS 检测到 FB 指定 电 流则进入关周期; 关周期, OB 下拉, 功率管不会立即关断, 但 OE 箝位 1.5V (功率管 关断后基极反向偏置,提高了耐压);在开或关周期,如检测到功率管超上限电流, 则上限电流触发器优先置位,强制 FB 下降,占空比变小,从而保护功率管和变压 器;在下一个关周期开始沿或FB 小于 1.8V,上限电流触发器复位。另外, ICW118A 内置热保护,在内温度高于 165℃后调宽振荡器的周期,使 ICW118A 温度 不超过 180℃; 内置斜坡补偿, 在 ICW118A 大占空比或连续电流模式时能稳定开/ 关周期。
- 若 VCC 降到 4.2V 左右,振荡器关闭,OSC1、OSC2 低电平,电源保持关周期, VCC 继续下降到 3.6V 左右,ICW118A 重新进入启动阶段。

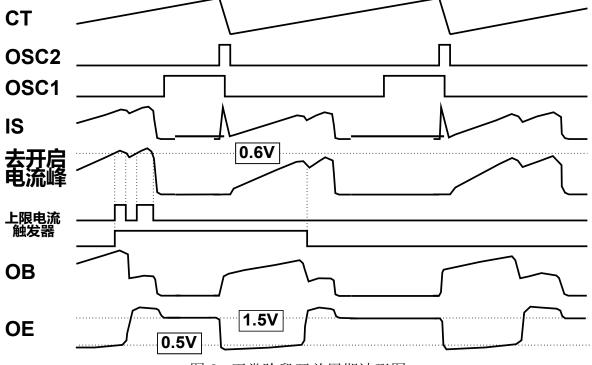


图 2. 正常阶段开关周期波形图

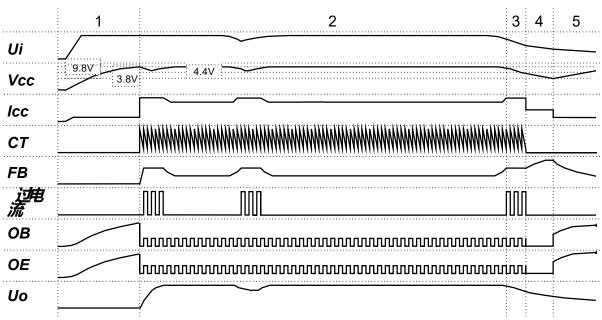


图 3. 全局波形图

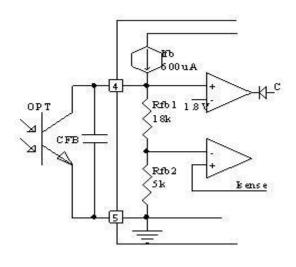
电参数定义

- 启动接受电流: 启动阶段 OB 输入 0.5mA 时 OC 点电流。
- 启动静态电流: VCC 接滤波电容和可调电流源,其它引脚悬空,能使 VCC 振荡时 (即能完成 ICW118A 启动的)最小电流源电流。
- 启动电压:上述 VCC 振荡的最大 VCC 值。
- 再启动电压:上述 VCC 振荡的最小 VCC 值。
- 振荡器关闭电压: 上述 VCC 振荡下降沿,使振荡器停振的 VCC 值。
- 静态电流:正常阶段,FB由 1.0K电阻接地,VCC电源电流。
- 振荡器上拉/下拉电流:正常阶段,FB=2.5V,CT=1.25V,CT 处上拉/下拉电流。
- FB 上拉电流: 正常阶段, FB=2.5V,IS=0V 时, FB 处上拉电流。
- FB 防上限电流:正常阶段,FB=6V,IS=0.3V,FB 处下拉电流。
- 内反馈电源电压: 无外围待机反馈电路的 ICW118A 电源,正常阶段时 VCC 值。
- OC 上限电流: FB=6V, FB 下拉电流开始动作时的最小 OC 电流。
- 斜坡电流驱动:指功率管基极驱动 OB 开电流是 IS 的函数,当 IS=0V 时 OB 开电流约 24mA,然后 OB 开电流随 IS 线性增加,当 IS 增加到 0.6V 时 OE 开电流约 35mA。

应用信息:

1. CT 定时电容与开关频率的关系

由内部集成 CT 电容进行 50uA 恒流 充电形成时钟的上升沿,在充电电压至 1.6V 时,内部电路将以 1.9mA 的下拉电流对 CT 放电,形成时钟的下降沿,完成一个时钟周期,一个时钟周期约为:

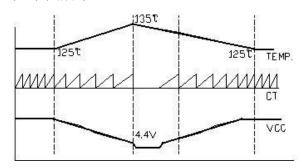

T=CT*48000 (S)

Fs=1/T (Hz)

尽管双极型电路也能工作在较高的频率下,但对于双极功率开关而言,仍需考虑存储时间对开关损耗的影响。通常比较合适的开关频率约在 70KHz 以下。在一般的应用场合可将 ICW118A 的对应工作频率约为 65KHz 左右。

2. FB 反馈与控制

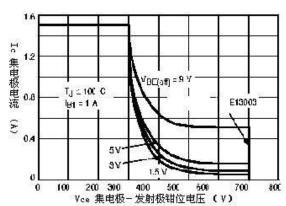
在正常工作状态,FB 的电压将决定最大开关电流的值,此电压越高开关电流越大(仅受限于峰值电流限制)。FB 引脚内部上拉 600uA 电流源,下拉电阻约 23K Ω(近似等效值)。此外在 FB 电压低于 1.8V 时,将使振荡周期加大,开关频率下降,低于 1.8V 越多,开关频率将越低。外接 FB 电容将对反馈带宽产生影响,进而影响某些外部参数,比如瞬态特性。



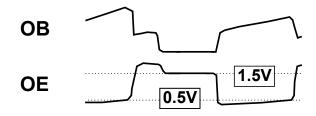
对于 CFB 电容的值,典型的应用可在

10-100nF 之间根据反馈回路的频率特性进行选取,推荐使用 10nF。

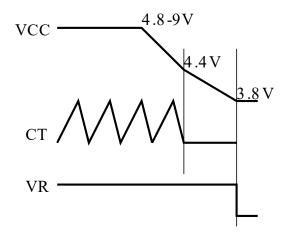
3. 过温度保护


IC 内部集成了精确的过温度保护功能。在芯片内部温度达到 165℃时,热保护电路动作,将时钟信号下拉,使开关频率降低,降低功耗。开关频率随温度的升高而降低,直至振荡器关闭。如下图所示,

4. 功率管驱动特性与高耐压偏置技术


功率管采用斜坡电流驱动,驱动电流随输出功率增加而增加,在 FB=0 时,OB 电流约为 24mA,在 FB=6V 时,OB 电流约为 35mA,小输出时的驱动功耗得到显著的降低。

IC 内部集成了独特的偏置技术,在功率管关断时,OB 输出立即下拉到地,同时偏置 OE 输出到约 1.5V,反向偏置发射结,加速 Ic 电流的下降速度,扩展了有效的安全工作区,开关管承受反向的CB 电压,使得开关管达到 700V 的电压承受能力。关于更详细的开关管耐压特性请参考相关的技术数据。


偏置波形如下图所示:

5. 过压与欠压保护

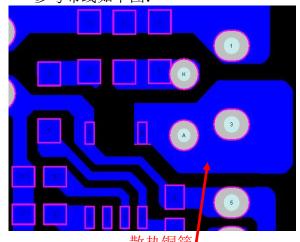
IC 具有带迟滞的欠电压保护功能。在 VCC 电压达到 8.8V 时 IC 开始启动,这个 初始的启动电压有驱动电阻提供,输入的高电压通过驱动电阻注入开关管的基 极,放大的 Ic 电流在 IC 内部经过限制电 路对 VCC 电容充电,从而形成驱动电压。在 IC 正常工作时应保持 VCC 电压在4.8-9V 之间(包括满负载输出的情况),若 VCC 电压下降到 4.2V 则振荡器将进入关闭状态, VCC 进一步降低到 3.6V 时, IC 即开始重新启动。

如下图所示:

IC 内部 VCC 具有一个上限电压比较器控制,若 VCC 试图大于 10V,则比较器动作,FB 将被下拉,锁定 VCC 至 10V,达到过电压的限制功能。利用此功能可以方便地实现前端的电压反馈功能,也可避免输出开环时的输出电压大幅度升高现象,保障负载的安全。因为此特性的存在,

VCC 的设计应保持在合适的范围,避免 在大输出负载时 VCC 的上升过高, IC 过压限制动作导致的输出电压下降现象。

6. 最大开关电流限制


IC 具有逐周期电流限制功能。每个开关周期均对开关电流进行检测,达到 FB 设定的电流或防上限电流时即进入关周 期,电流的检测具有实时前沿消隐功能, 屏蔽开关尖峰,避免开关电流的错误检测。合理的温度补偿则消除了温度的影响,相 对常规的 MOSFET (温度变化时的 Ron 变化很大) 开关芯片,开关电流在一个较 宽的范围都可以非常精准,这样将允许设 计者在设计方案时不必留有太大的余量 即可满足较大的工作温度范围,提高电路 的使用安全性。

对于 ICW118A, 其典型的最大开关电流限制值约为 0.23A,在一个设计在 80V 反射电压的反激式电源中,可以容易地实现大于 4W 输出功率,且满足宽的温度范围。

7. 散热的要求

对于一个典型的功率开关而言,应使用必要的散热措施,以避免过高的温度导致热保护。IC 内部主要的发热是开关管的开关损耗产生的热量,因此恰当的散热位置是 IC 的 Pin8 脚,一个易于使用的方法是在 Pin8 脚铺设一定面积的 PCB 铜箔,尤其在铜箔之上镀锡处理将大大增加散热能力。对于一个 85-265V 输入,3.5W 输出的典型应用,接近 100mm²的铜箔面积是推荐的。

参考布线如下图:

孜热铜箔┛

典型应用电路(输入85-265V,输出5V0.5A, CC/CV):

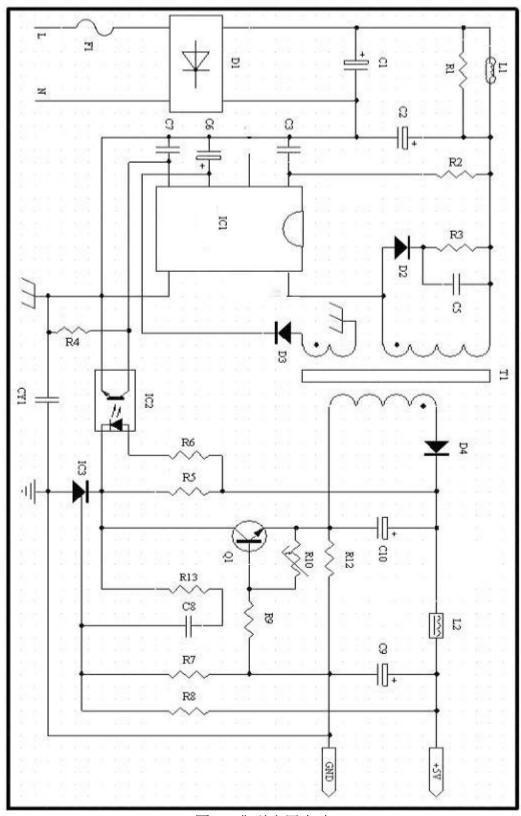
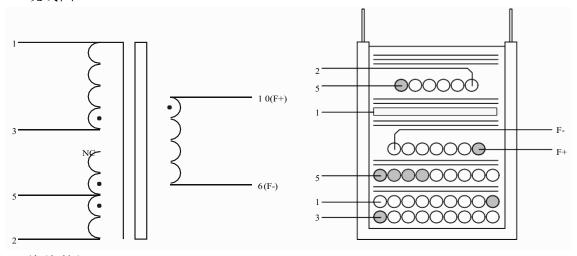


图 4. 典型应用电路

元器件清单:

序号	元件名称	规格/型号	封装	数量	标号	
1	电阻	1R,5%	1/2W	1	R12	
2		10R,5%	0805	1	R6	
3		1K,5%	0805	2	R5	R9
4		4.7K,5%	1206	1	R1	
5		10K,1%	0805	2	R4	R7
6		10.5K,1%	0805	1	R8	
7		0R	0805	1	R13	
8		100K,5%	1206	1	R3	
9		2.2M,5%	1/2W	1	R2	
10	电容	222/1KV	1206	1	C5	
11		103/50V	0805	1	С3	C7
12		104/50V	0805	1	C8	
13	Y电容	471M/400V	CT7,Y1	1	CY1	
14	电解电容	4.7uF/400V	EC3.5-8	2	C1	C2
15		22uF/16V	EC3-5	1	C6	
16		220uF/16V	EC3-6.3	1	C9	
17		470uF/16V	EC3.5-8	1	C10	
18	二极管	1N4148	DO-35	1	D3	
19		FR107	DO-41	1	D2	
20		SR160	DO-41	1	D4	
21		1N4007	DO-41	4	D1	
22	热敏电阻	TTC103	CT5	0	R10	
23	色码电感	1mH	D4*8mm	1	L1	
24	工型电感	DR6*8,10uH	DR6*8	1	L2	
25	变压器	EE13H	EE13-10P	1	T1	
26	保险管	F1A/250V	D4*10mm	1	F1	
27	三极管	2N3096	TO92	1	Q1	
28	IC	ICW118A	SOP6	1	IC1	
29		TL431A	TO92	1	IC3	
30		PC817B	DIP4	1	IC2	


变压器绕制:

1. 磁心参数

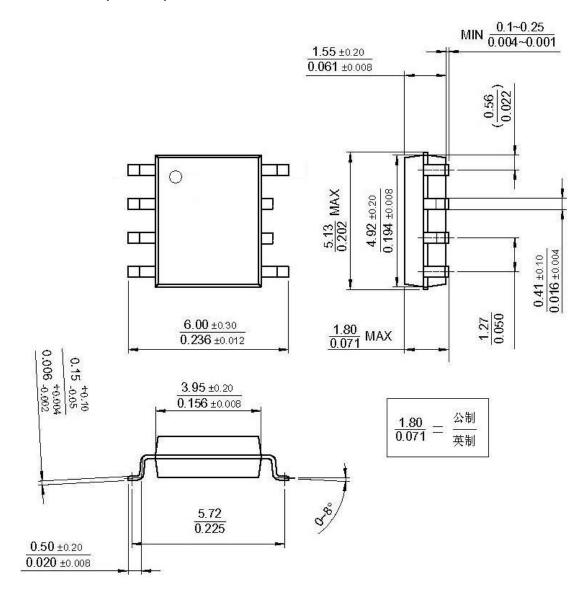
Core : EE13,TDK PC40 Ae=17 mm^2 Aw=33.5 mm^2 Bobbin : EE13, 10PIN, 5+5PIN,VELOX 420-SEO , 94V0

Lp=2.5mH $\pm 5\%$

2. 绕线图

3. 绕线数据

序号	名称	规格	方向	匝/层数	备注
1	Np, 主绕组	Ф0.13mm*1P,2UEW	3-1	160TS	密绕三层
2	绝缘胶纸	3M,No.1350		2 层	
3	Nsh1, 屏蔽绕组	Ф0.15mm*4P,2UEW	5-NC	11TS	均绕一层
4	绝缘胶纸	3M,No.1350		2 层	
5	Ns, 输出绕组	Ф0.35mm*1P,3TIW	F+ F-	11TS	均绕一层
6	绝缘胶纸	3M,No.1350		2 层	
7	Nsh2, 屏蔽绕组	0.05mm*6mm,铜皮	1-NC	0.9TS	居中
8	绝缘胶纸	3M,No.1350		2 层	
9	Nvcc, 供电绕组	Ф0.15mm*1P,2UEW	5-2	14TS	居中密绕
10	绝缘胶纸	3M,No.1350		3 层	



测试数据:

测 试 数 11	単位	输入电压 (V)						
测 试 <u>数</u> 据		85	110	135	180	220	265	
lo=0A 时输入功率	W	0.08	0.09	0.10	0.13	0.17	0.21	
lo=0A 时输出电压	V	5.15	5.15	5.15	5.15	5.15	5.15	
lo=0A 时输出纹波	mV	20	22	25	28	29	30	
100% 输出负载:	100% 输出负载:							
Io=0.5A 时输出电压	V	5.13	5.13	5.13	5.13	5.13	5.13	
lo=0.5A 时输出纹波	mV	36	32	38	40	42	48	
lo=0.5A 时转换效率	%	61.8	64.3	64.3	63.8	63.0	62.7	
75% 输出负载:								
lo=0.375A 时输出电压	V	5.14	5.14	5.14	5.14	5.14	5.14	
lo=0.375A 时输出纹波	mV	32	32	35	42	46	46	
lo=0.375A 时转换效率	%	63.4	64.9	65.3	64.3	63.6	62.0	
50% 输出负载:								
lo=0.25A 时输出电压	V	5.14	5.14	5.14	5.14	5.14	5.14	
lo=0.25A 时输出纹波	mV	30	34	34	42	52	56	
lo=0.25A 时转换效率	%	62.7	64.3	64.6	63.9	62.4	60.0	
25% 输出负载:								
lo=0.125A 时输出电压	V	5.15	5.15	5.15	5.15	5.15	5.15	
lo=0.125A 时输出纹波	mV	30	42	38	45	48	54	
lo=0.125A 时转换效率	%	60.6	61.9	61.9	59.6	57.0	55.0	
For CEC EFF _{AVG} =0.09*LN(5*0.5)+0.49=57.3% Min.								
25-100%输出的平均效率	%	62.1	63.9	64.0	62.9	61.5	59.9	
输出短路时输入功率	W	0.30	0.50	0.65	0.80	1.06	1.25	
电子负载:博计 3310D,功率计: 固纬 GPM-8212,示波器: 泰克 TDS-3012B								

封装尺寸图(SOP6)

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等, 请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。