

30V N-Channel MOSFET

General Description

The 3006 uses advanced trench technology to provide excellent RDS(ON). This device is suitable for low voltage, high speed switching applications in power supplies.

Features

- Simple Drive Requirement
- 100% Avalanche tested
- RoHS Compliant

Product Summary

BVDSS	RDSON	ID
30V	6.5 m Ω	90A

Applications

- DC/DC converter
- Load Switch
- Power Motor Controls
- Bridge Circuits

TO-220/263/262 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	30	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current ¹	90	Α	
I _D @T _C =100℃	Continuous Drain Current ¹	58	А	
I _{DM}	Pulsed Drain Current ²	360	А	
EAS	Single Pulse Avalanche Energy ³	169	mJ	
P _D	Total Power Dissipation ⁴	75	W	
T _{STG}	Storage Temperature Range -55 to 150		${\mathbb C}$	
T _J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient(Steady State) ¹		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-case ¹		1.68	°C/W

CMP3006/CMB3006/CMI3006

30V N-Channel MOSFET

Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		5	6.5	mΩ
R _{DS(ON)}		V_{GS} =4.5V , I_D =10A		6.5	10	
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	1		2.5	V
1	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V			1	uA
I _{DSS}		V _{DS} =24V , V _{GS} =0V ,TC=55 ℃			5	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =10A		14		S
Q_g	Total Gate Charge (4.5V)	I _D =15A		20		
Q_gs	Gate-Source Charge	V _{DS} =15 V		7.5		nC
Q_gd	Gate-Drain Charge	V _{GS} =4.5V		7		
$T_{d(on)}$	Turn-On Delay Time	V _{DD} =15V		10		
Tr	Rise Time	I _D =15 A		15		ne
$T_{d(off)}$	Turn-Off Delay Time	R _G =3.3Ω		40		ns
T _f	Fall Time	V _{GS} =10V		12		
C _{iss}	Input Capacitance			2200		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		250		pF
C _{rss}	Reverse Transfer Capacitance			230		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			90	Α
I _{SM}	Pulsed Source Current ^{2,5}	VG-VD-UV , FOICE Current			360	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =30 A , T _J =25 ℃			1.2	V

Note

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leqslant~300\text{us}$, duty cycle $\leqslant2\%$
- 3.The EAS data shows Max. rating . The test condition is VDD=20V,VGS=10V,L=0.5mH,IAS=26A
- 4.The power dissipation is limited by 150 $\!\!\!\!\!^{\,\circ}$ junction temperature
- 5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.