CMP100N04/CMB100N04/CMI100N04

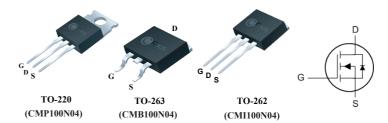
40V N-Channel MOSFET

General Description

The 100N04 is N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

Features

- Simple Drive Requirement
- Fast Switching
- Low On-Resistance


Product Summary

BVDSS	RDSON	ID
40V	4mΩ	100A

Applications

- HIGH CURRENT, HIGH SPEED SWITCHING
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- SOLENOID AND RELAY DRIVERS
- AUTOMOTIVE ENVIRONMENT

TO-220/263/262 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units		
V_{DS}	Drain-Source Voltage	40	V		
V _{GS}	Gate-Source Voltage	±20	V		
I _D @T _C =25℃	Continuous Drain Current ¹	Continuous Drain Current ¹ 100			
I _D @T _C =100℃	Continuous Drain Current ¹	А			
I _{DM}	Pulsed Drain Current ² 320		А		
EAS	Single Pulse Avalanche Energy ³	715	mJ		
I _{AS}	Avalanche Current	56	Α		
P _D	Total Power Dissipation	260	W		
T _{STG}	Storage Temperature Range -65 to 175		${\mathbb C}$		
TJ	Operating Junction Temperature Range	-65 to 175	$^{\circ}$		

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient 1		62.5	℃W
R _{θJC}	Thermal Resistance Junction-case		0.7	℃W

CMP100N04/CMB100N04/CMI100N04

40V N-Channel MOSFET

Electrical Characteristics ($T_J=25^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40			V
D	Static Drain-Source On-Resistance ²	V_{GS} =10V , I_D =25A		3.3	4	- mΩ
R _{DS(ON)}	Static Dialii-Source On-Nesistance	V _{GS} =4.5V , I _D =20A		4.8	6	
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1		3	V
	Drain-Source Leakage Current	V _{DS} =40V , V _{GS} =0V			1	- uA
I _{DSS}		V _{DS} =40V , V _{GS} =0V ,TC=125℃			10	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =20A		26		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2		Ω
Qg	Total Gate Charge	I _D =100A		84	114	
Q _{gs}	Gate-Source Charge	V _{DD} =32 V		21		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =4.5V		36		
$T_{d(on)}$	Turn-On Delay Time	V _{DD} =20 V		40		
Tr	Rise Time	I _D =40A		112		
T _{d(off)}	Turn-Off Delay Time	R _G =4.7Ω		144		ns
T _f	Fall Time	V _{GS} =4.5V		85		
C _{iss}	Input Capacitance			6500		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		1500		pF
C _{rss}	Reverse Transfer Capacitance			450		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	V _G =V _D =0V . Force Current			100	Α
I _{SM}	Pulsed Source Current ²	V _G =V _D =UV , Force Current			320	Α
V _{SD}	Diode Forward Voltage ²	V_{GS} =0V , I_{S} =40 A , T_{J} =25 $^{\circ}$ C			1.2	V

Note

1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =30V, V_{GS} =10V,L=0.5mH, I_{AS} =30A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

 $\label{thm:constraints} \mbox{Cmos reserver the right to improve product design , functions and reliability without notice.}$