

ZHEJIANG UNIU-NE Technology CO., LTD 浙江宇力微新能源科技有限公司

U3315-6 Data Sheet

V 3.0

版权归浙江宇力微新能源科技有限公司

High Current IO+/- 1.2/1.5A 3-PHASE BRIDGE DRIVER

General Description

U3315/6 is a high-speed 3-phase gate driver for power MOSFET and IGBT devices with three independent high and low side referenced output channels. Built-in dead time protection and shoot- through protection prevent damage to the half-bridge. The UVLO circuits prevent malfunction when VCC and VBS are lower than the specified threshold voltage. A novel high-voltage BCD process and common-mode noise canceling technique provide stable operation of high-side drivers under high dV/dt noise conditions while achieving excellent negative low-PW tolerance. transient voltage consumption isincluded so that standby mode may be used to set thechip into a low quiescent current state to realize long battery lifetime.

Product Summary

VOFFSET	300V max
I _O +/-	1.2 A / 1.5A
VCC	4.5V to 20V
t _{on/off} (typ.) Work Tem	220 & 110ns -40 ~150 ℃

Key Features

- Floating channel designed for bootstrap operation
- Fully operational to +300 V
- Tolerant to negative transient voltage
- Gate drive supply range from 4.5V to 20V
- Independent 3 half-bridge drivers
- Low side output out of phase with inputs. High side outputs out of phase
- 3.3 V logic compatible
- Lower di/dt gate drive for better noise immunity

Applications

- E-BIKE/electric power tool 3-phase motor driver
- Battery-powered mini/micro motor control
- General purpose inverter

Package

Products Information

Base Part Number	Package Type	Standard OUT		V _{OFFSET}	Logic Control
Dase Fait Number	Fackage Type	IO+	IO-	VOFFSET	Logic Control
U3315	QFN24	1.2A	1.5A	300V	HIN & LIN
U3316	QFN24	1.2A	1.5A	300V	HIN & LIN

Base Part Number	Package Type	Standard OUT		VOFFSET	Logic Control
Base Fart Number	i dekuge iype	IO+	IO-	VOFFSEI	Logic Control
U3315	TSSOP20	1.2A	1.5A	300V	HIN & LIN
U3316	TSSOP20	1.2A	1.5A	300V	HIN & LIN

Typical Application

Pin Function

Number	Symbol	Description
1	VCC	Low side and logic fixed supply
2	HIN1,2,3	Logic inputs for high side gate driver outputs(HO1,2,3),in phase
3	U3316 LIN1,2,3	Logic inputs for high side gate driver outputs(LO1,2,3),in phase
4	U3315 LIN1,2,3	Logic inputs for high side gate driver outputs(LO1,2,3),out of phase
5	СОМ	Logic Ground
6	VB1,2,3	High side floating supply
7	HO1,2,3	High side gate driver outputs
8	VS1,2,3	High voltage floating supply returns
9	LO1,2,3	Low side gate driver output

Packages

20-PIN TSSOP

Block Diagram

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min	Мах	Units	
VS	High side offset voltage	VB 1,2,3-25	VB 1,2,3+ 0.3		
VB	High side floating supply voltage		-0.3	300	
VHO	High side floating output voltage		VS1,2,3 -0.3	VB 1,2,3+ 0.3	
VCC	Low side and logic fixed supply voltage		-0.3	25	-
СОМ	Logic ground		VCC- 25	VCC+0.3	V
VLO1,2,3	Low side output voltage		-0.3	VCC+0.3	
VIN	Input voltage		COM-0.3	Lower of (COM+15) or (VCC+ 0.3)	
dV/dt	Allowable offset voltage slew rate		<u> </u>	50	V/ns
	Package power dissipation @ TA	TSSOP20	_	1.5	w
PD	≤+25 °C	QFN24	_	1.6	V
		TSSOP20	_	83	°C/W
RthJA	Thermal resistance, junction to ambient	QFN24		78	C/VV
TJ	Junction temperature			150	
TS	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds	5)		300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure . For proper operation the device should be used within the recom- mended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min	Max	Units
VB1,2,3	High side floating supply voltage	VS1,2,3+4.5	VS1,2,3+20	
VS1,2,3	High side floating supply offset voltage	Note 1	260	
VHO1,2,3	High side output voltage	VS1,2,3	VB1,2,3	
VLO1,2,3	Low side output voltage	0	VCC	V
VCC	Low side and logic fixed supply voltage	4.5	20	
VIN	Logic input voltage	СОМ	COM + 5	
ТА	Ambient temperature	-40	125	°C

Note 1: Logic operational for VS of COM

Electrical Characteristic

 $(V_{CC}-COM)=(V_B-V_S)=15V$. Ambient temperature $T_A=25^{\circ}C$ unless otherwise specified. The $V_{IN,TH}$, V_I , and I_{IN} parameters are referenced to COM and are applicable to all channels. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads. The V_{CCUV} parameters are referenced to, COM. The V_{BSUV} parameters are referenced to V_S .

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Low Side Power Supply Characteristics						
Quiescent VCC supply current	I _{QVCC1}	$V_{HIN1,2,3} = V_{LIN1,2,3} = 0 \text{ or } 5V, V_{ENB} = 0$	210	330	450	
Quiescent VCC supply current in standby mode	I _{QVCC2}	$V_{HIN1,2,3} = V_{LIN1,2,3} = 0 \text{ or } 5V, V_{ENB} = 5$	-	46	80	μA
operating VCC supply current	I _{VCCOP}	f _{LIN1,2,3} =20KH, f _{HIN1,2,3} =20KH,	-	1500	-	
VCC supply under-voltage positive going threshold	Vccuv+	-	2.9	4.2	5.5	
VCC supply under-voltage negative going threshold	Vccuv-	-	2.5	3.8	5.1	V
VCC supply under-voltage lockout hysteresis	Vcchys	-	-	0.4	-	
High Side Floating Power Supply Chara	cteristics					
High side VBS supply under-voltage positive going threshold	VBSUV+	-	2.5	3.8	4.5	_
High side VBS supply under-voltage negative going threshold	VBSUV-	-	2.2	3.5	4.5	V
High side VBS supply under-voltage lockout hysteresis	VBSUVHS	-	-	0.3	-	
High side quiescent VBS supply current	IQBS	V _{BS} =15V	25	45	65	
Offset supply leakage current	I _{LK}	V _B =V _S =260V V _{CC} =0V	-	-	10	μA
Logic Input Section						
Logic HIGH input voltage HIN1,2,3, LIN1,2,3 and ENB	Vін	-	2.5	-	-	
Logic LOW input voltage HIN1,2,3, LIN1,2,3 and ENB	VIL	-	-	-	0.8	
Input positive going threshold	Vin,th+	-	-	1.9	-	V
Input negative going threshold	Vin,th-	-	-	1.4	-	
Logic HIGH input bias current	I _{IN+}	V _{IN} =5V	-	50	-	μA
Logic LOW input bias current	I _{IN-}	V _{IN} =0	-	0	-	_ μΛ
Gate Driver Output Section						
High side output HIGH short-circuit pulse current	Іно+	V _{HO} =V _S =0	-	1.2	-	
High side output LOW short-circuit pulse current	Іно-	V _{HO} =V _B =15V	-	1.5	-	
Low side output HIGH short-circuit pulse current	I _{LO+}	V _{LO} =0	-	1.2	-	A
Low side output LOW short-circuit pulse current	I _{LO-}	V _{LO} =V _{CC} =15V	-	1.5	-	
Allowable negative VS voltage for HIN1,2,3 signal propagation to HO1,2,3	Vsn	V _{BS} =15V	-	-12	-	V

Electrical Characteristic

 $(V_{CC}-COM)=(V_B-V_S)=15V$, $V_{S1,2,3}=COM,$ and $C_{\text{load}}=1nF$ unless otherwise specified, ambient temperature $T_A=25^{o}C.$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Turn-on propagation delay	t _{on}	V _{HIN1,2,3} or V _{LIN1,2,3} =5V, V _{S1,2,3} =0	-	220	260	
Turn-off propagation delay	t _{off}	V _{HIN1,2,3} or V _{LIN1,2,3=0} , V _{S1,2,3} =0	-	110	140	
Turn-on rise time	tr	V _{HIN1,2,3} or V _{LIN1,2,3} =5V, V _{S1,2,3} =0	-	37	-	
Turn-off fall time	t _f	V _{HIN1,2,3} or V _{LIN1,2,3} =0, V _{S1,2,3} =0	-	30	-	ns
Dead time	DT	V _{HIN1,2,3} or V _{LIN1,2,3} =0 and 5V, without external dead time	-	100	-	. 110
Dead time matching (all six channels)	MDT	without external dead time	-	-	50	
Delay matching (all six channels)	МТ	external dead time > 1000ns	-	-	50	
Output pulse-width matching	РМ	external dead time > 1000ns, PW _{IN} =10µs, PM=PW _{OUT} –PW _{IN}	-	-	50	

LOW SIDE POWER SUPPLY: VCC

VCC is the low side supply and it provides power to both input logic and low side output power stage. The built-in under- voltage lockout circuit enables the device to operate at sufficient power when a typical VCC supply voltage higher than V_{CCUV+} =4.2V is present, shown as Figure. 1. The U3315/6 shuts down all the gate driver outputs, when the VCC supply voltage is below V_{CCUV-} =3.8 V, shown as Figure. 1. This prevents the external power devices against extremely low gate voltage levels during on-state which may result in excessive power dissipation.

Figure. 1 VCC supply UVLO operating area

HIGH SIDE POWER SUPPLY: VBS (VB1-VS1, VB2-VS2, VB3-VS3)

VBS is the high side supply voltage. The total high side circuitry may float with respect to COM following the external high side power device emitter/source voltage. Due to the internal low power consumption, the entire high side circuitry may be supplied by bootstrap topology connected to VCC, and it may be powered with small bootstrap capacitors. The device operating area as a function of the supply voltage is given in Figure. 2.

LOW SIDE AND HIGH CONTROL INPUT LOGIC: HIN&LIN (HIN1, 2,

3/LIN1, 2, 3)

The Schmitt trigger threshold of each input is designed low enough to guarantee LSTTL and CMOS compatibility down to 3.3V controller outputs. Input Schmitt trigger and advanced noise filtering provide noise rejection of short input pulses. An internal pull-down resistor of about 200k Ω (positive logic) pre-biases each input during VCC supply start-up state. The minimum recommended input pulse-width is 300ns for proper operation of the driver.

SHOOT-THROUGH PREVENTION

The U3315/6 is equipped with shoot-through protection circuitry (also known as cross conduction prevention circuitry). Figure. 3 shows how this protection circuitry prevents both the high- and low-side switches from conducting at the same time. When the inputs controlling both high-side and low-side drivers are both logic HIGH, then both driver outputs are pulled down to logic LOW to shut down two power devices in the same bridge.

DEAD TIME PROTECTION

The U3315/6 features integrated fixed dead time protection circuitry. The dead time feature inserts a time period (a minimum dead time) in which both the high- and low-side power switches are held off. This is done to ensure that the power switch has fully turned off before the second power switch is turned on. This minimum dead time is automatically inserted whenever the external dead time is shorter than DT. External dead times larger than DT are not modified by the gate driver. Figure. 4 illustrates the dead time period and the relationship between the output gate signals.

Figure. 4 Dead time protection

GATE DRIVER (HO1, 2, 3/ LO1, 2, 3)

Low side and high side driver outputs are specifically designed for pulse operation and dedicated to drive power devices such as IGBT and power MOSFET. Low side outputs (i.e. LO1, 2, 3) are state triggered by the respective inputs, while high side outputs (i.e. HO1,2,3) are only changed at the edge of the respective inputs. After releasing from an under- voltage condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side output. In contrast, after releasing from an under-voltage condition of the VCC supply, the low side outputs may directly switch to the state of their respective inputs without the additional constraints of the high side driver.

Typical Performance Characteristics

Mechanical Dimensions

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
D	6.400	6.600	0.252	0.259
E	4.300	4.500	0.169	0.177
b	0.190	0.300	0.007	0.012
с	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
А		1.200		0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
e	0.65(BSC)		0.026	(BSC)
L	0.500	0.700	0.020	0.028
н	0.25(TYP)		0.01(TYP)
θ	1°	7°	1°	7°

Ordering Information

Symbol		Dimensions(mm)				
Symbol	Min.	Nom.	Max.			
А	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3		0.20 REF				
b	0.18	0.25	0.30			
D		4.00 BSC				
D2	2.50	2.65	2.80			
E		4.00 BSC				
E2	2.50	2.65	2.80			
е		0.50 BSC				
L	0.35	0.40	.0.45			

Notes:

1. All dimensions refer to JEDEC MO-220 WGGD-6

2. All dimensions are in mm

1.版本记录

DATE	REV.	DESCRIPTION
2018/04/19	1.0	First Release
2019/05/21	2.0	Change the package
2021/10/19	3.0	Layout adjustment

2.免责声明

浙江宇力微新能源科技有限公司保留对本文档的更改和解释权力,不另行通知!产品不断提升, 以追求高品质、稳定性强、可靠性高、环保、节能、高效为目标,我司将竭诚为客户提供性价 比高的系统开发方案、技术支持等更优秀的服务。量产方案需使用方自行验证并自担所有批量 风险责任。未经我司授权,该文件不得私自复制和修改。 版权所有 浙江宇力微新能源科技有限公司/绍兴宇力半导体有限公司

3.联系我们

浙江宇力微新能源科技有限公司 总部地址:绍兴市越城区斗门街道袍渎路25号中节能科创园45幢4/5楼 电话:0575-85087896 (研发部) 传真:0575-88125157 E-mail:htw@uni-semic.com

无锡地址:无锡市新吴区纺城大道299号深港都会广场9-1401 电 话:0510-85297939 E-mail:zh@uni-semic.com

深圳地址:深圳市宝安区航城街道三围社区南昌路上合工业园B2栋501 电话:0755-84510976 E-mail: htw@uni-semic.com

