

30 MHz Operational Amplifier with EMI Filtering

Features

- Low-Input Offset Voltage:
- ±1.6 mV (maximum)
- · Quiescent Current: 2.5 mA (maximum)/amplifier
- Enhanced EMI Protection
- Supply Voltage Range: 1.8V to 5.5V
- Gain Bandwidth Product: 30 MHz (typical)
- Rail-to-Rail Input/Output
- Unity Gain Stable
- No Phase Reversal
- Quick Start-up Time: 2 µs typical
- Small Packages:
- Singles in SC70-5, SOT-23-5
- Dual in SOIC-8, MSOP-8
- Quad in SOIC-14, TSSOP-14
- Extended Temperature Range:-40°C to +125°C
- AEC Q100 qualified

Applications

- Automotive
- Portable Equipment
- Medical Diagnostic Equipment
- Active Filters
- Sensor Conditioning

Design Aids

- SPICE Macro Models
- Microchip Advanced Part Selector (MAPS)
- · Analog Demonstration and Evaluation Boards
- Application Notes

Start-up Time

Description

The Microchip Technology Inc. MCP6496/6R/6U/7/9 operational amplifier operates with a single supply voltage as low as 1.8V, while drawing low quiescent current (2.5 mA, maximum per amplifier). This op amp also has low-input offset voltage (±1.6 mV, maximum) and rail-to-rail input and output operation. In addition, the MCP6496/6R/6U/7/9 is unity gain stable and has a gain bandwidth product of 30 MHz (typical).

The MCP6496/6R/6U/7/9 has EMI protection to minimize the effects of electromagnetic interference from external sources. This feature makes it suited for EMI sensitive applications such as power lines, radio stations and mobile communications.

This family is offered in single (MCP6496), dual (MCP6497) and quad (MCP6499) packages. All devices are designed using an advanced CMOS process and fully specified in the extended temperature range from -40° C to $+125^{\circ}$ C.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

V _{DD} – V _{SS}	6V
Current at Analog Input Pins (V _{IN} +, V _{IN} -)	±5 mA
Analog Inputs (V _{IN} +, V _{IN} -) ††	$V_{SS} - 0.5V$ to $V_{DD} + 0.5V$
Analog Outputs (V _{OUT})	$V_{SS} - 0.3V$ to $V_{DD} + 0.3V$
Difference Input Voltage	V _{DD} – V _{SS}
Output Short-Circuit Current (Note 1)	Continuous
Storage Temperature	65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
ESD Protection on All Pins (HBM; CDM; MM)	≥ 4 kV; 2 kV; 200V

Note 1: Short-circuit to ground, one amplifier per package

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage Limits".

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, V_L = $V_{DD}/2$, R_L = 10 k Ω to V_L and C_L = 30 pF.

$v_{OUT} = v_{DD}/2$, $v_{L} = v_{DD}/2$, $v_{L} = 10 \text{ ks}_2$ to v_{L} and $c_{L} = 30 \text{ pr}$.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
nput Offset								
Input Offset Voltage	V _{OS}	-1.6	—	1.6	mV			
Input Offset Drift with Temperature	$\Delta V_{OS} / \Delta T_A$	_	±0.6	_	µV/°C	T _A = -40°C to +125°C		
Power Supply Rejection Ratio	PSRR	82	100	—	dB			
Input Bias Current and Impedan	се							
Input Bias Current	I _B	_	±1	—	pА			
		_	19	—	pА	T _A = +85°C		
			200	—	pА	T _A = +125°C		
Input Offset Current	I _{OS}	_	±1	—	pА			
Common Mode Input Impedance	Z _{CM}		10 ¹³ 6	_	Ω pF			
Differential Input Impedance	Z _{DIFF}	—	10 ¹³ 2	—	Ω∥pF			
Common Mode								
Common Mode Input Voltage	V _{CMR}	V _{SS} - 0.3		V _{DD} + 0.3	V			
Range		V _{SS} - 0.1	_	V _{DD} + 0.1		T _A = -40°C to +125°C, Guaranteed by Characterization.		
Common Mode Rejection Ratio	CMRR	_	125	—	dB	V _{DD} = 5.5V V _{CM} = -0.1V to 4.1V		
		66	92	_	dB	V _{DD} = 5.5V V _{CM} = -0.3V to 5.8V		
			75	_	dB	V _{DD} = 1.8V V _{CM} = -0.3V to 2.1V		

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$. **Parameters** Sym. Min. Max. Units Conditions Тур. **Open-Loop Gain** DC Open-Loop Gain 105 130 dB $0.2 < V_{OUT} < (V_{DD} - 0.2V)$ A_{OL} (Large Signal) Output High-Level Output Voltage VOH V_{DD} - 10 V_{DD} - 3.5 mV $V_{DD} = 5.5V, R_{L} = 10 \text{ k}\Omega$ ____ V_{DD} - 50 V_{DD} - 30 V_{DD} = 5.5V, R_L = 1 k Ω Low-Level Output Voltage V_{OL} V_{SS} + 3.5 $V_{SS} + 10$ mV V_{DD} = 5.5V, R_L = 10 k Ω ____ V_{DD} = 5.5V, R_L = 1 k Ω $V_{SS} + 30$ V_{SS} + 50 ____ Output Short-Circuit Current V_{DD} = 1.8V, source I_{SC} ±15.5 mΑ ±8.5 ____ mΑ V_{DD} = 1.8V, sink ____ ±55 mΑ V_{DD} = 5.5V, source ____ _ ±45 V_{DD} = 5.5V, sink mΑ **Power Supply** Supply Voltage V_{DD} 1.8 5.5 V ____ Quiescent Current per Amplifier lo 2.0 2.5 mΑ $I_{0} = 0$ Startup Time 2 V_{DD} = 0V to 5.5V t_{start} μs 122 Crosstalk ____ dB ____

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T _A = +25°C, V _{DD} = +1.8V to +5.5V, V _{SS} = GND, V _{CM} = V _{DD} /4	
$V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$.	

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
AC Response							
Gain Bandwidth Product	GBWP	_	30	_	MHz		
Phase Margin	PM	_	53	_	0	G = +1 V/V	
Slew Rate	SR		40	_	V/µs	V _{DD} = 5.5V	
Settling Time	t _s	_	0.4	_	μs	To 0.1%, V _{DD} = 5V, 2V step, G = +1	
		—	0.5	_		To 0.01%, V _{DD} = 5V, 2V step, G = +1	
Total Harmonic Distortion + Noise	THD+N	_	0.002	_	%	$V_{DD} = 5V$, $V_o = 1V_{RMS}$, G = +1, f = 1 kHz, 80 kHz measurement BW	
Noise							
Input Noise Voltage	E _{ni}		3.3		μV _{P-P}	f = 0.1 Hz to 100 Hz	
Input Noise Voltage Density	e _{ni}	_	12	_	nV/√Hz	f = 1 kHz	
		—	4.8	—	nV/√Hz	f = 100 kHz	
Input Noise Current Density	i _{ni}	—	0.6	—	fA/√Hz	f = 1 kHz	
Electromagnetic Interference	EMIRR	_	30	_	dB	V _{IN} = 100 mV _{PK} , 400 MHz	
Rejection Ratio		_	42	_		V _{IN} = 100 mV _{PK} , 900 MHz	
		_	49	_		V _{IN} = 100 mV _{PK} ,1800 MHz	
			51	_		V _{IN} = 100 mV _{PK} , 2400 MHz	
		_	52	_		V _{IN} = 100 mV _{PK} , 5800 MHz	

TABLE 1-3: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = +1.8V to +5.5V and V_{SS} = GND.							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Operating Temperature Range	Τ _Α	-40	_	+125	°C	Note 1	
Storage Temperature Range	Τ _Α	-65	—	+150	°C		
Thermal Package Resistances							
Thermal Resistance, 5L-SC70	θ_{JA}	_	331	—	°C/W		
Thermal Resistance, 5L-SOT-23	θ_{JA}	—	221	_	°C/W		
Thermal Resistance, 8L-MSOP	θ_{JA}	—	206	_	°C/W		
Thermal Resistance, 8L-SOIC	θ_{JA}	—	150	—	°C/W		
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W		
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W		

Note 1: The internal junction temperature (T_J) must not exceed the absolute maximum specification of +150°C.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 k Ω to V_L and C_L = 30 pF.

2.1 DC Inputs

FIGURE 2-1: Input Offset Voltage Histogram.

FIGURE 2-2: Histogram.

FIGURE 2-4: Input Offset Voltage vs. Common-Mode Input Voltage.

FIGURE 2-5: Input Offset Voltage vs. Output Voltage.

MCP6496/6R/6U/7/9

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$.

FIGURE 2-7: Input Bias, Offset Current vs. Common-Mode Input Voltage.

FIGURE 2-8: Input Bias, Offset Currents vs. Common Mode Input Voltage.

Temperature.

CMRR, PSRR vs. Ambient

FIGURE 2-10: DC Open-Loop Gain vs. Ambient Temperature.

FIGURE 2-11: Measured Input Current vs. Input Voltage (below V_{SS}).

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$.

2.2 Other DC Voltages and Currents

FIGURE 2-12: Quiescent Current vs. Ambient Temperature.

FIGURE 2-13: Quiescent Current vs. Power Supply Voltage.

FIGURE 2-14: Quiescent Current vs. Common-Mode Input Voltage.

FIGURE 2-15: Output Short-Circuit Current vs. Power Supply Voltage.

FIGURE 2-16: Output Voltage Headroom vs. Output Current.

FIGURE 2-17: Output Voltage Headroom vs. Output Current.

MCP6496/6R/6U/7/9

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$.

2.3 Frequency Response

FIGURE 2-19: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-20: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

FIGURE 2-22: Closed-Loop Output Impedance vs. Frequency.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, V_L = $V_{DD}/2$, R_L = 10 k Ω to V_L and C_L = 30 pF.

FIGURE 2-24: EMIRR vs. RF Input Peakto-Peak Voltage.

FIGURE 2-25: Channel Separation vs. Frequency.

FIGURE 2-26: Maximum Output Voltage Swing vs. Frequency.

MCP6496/6R/6U/7/9

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $C_L = 30 \text{ pF}$.

2.4 Input Noise

FIGURE 2-27: Input Noise Voltage Density vs. Frequency.

FIGURE 2-28: 0.1 Hz to 10 Hz Voltage Noise.

FIGURE 2-29:

THD + N vs. Frequency.

THD + N vs. Amplitude.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/4$, V_{OUT} = $V_{DD}/2$, V_L = $V_{DD}/2$, R_L = 10 k Ω to V_L and C_L = 30 pF.

2.5 Time Response

FIGURE 2-31: Small Signal Noninverting Pulse Response.

FIGURE 2-32: Small Signal Inverting Pulse Response.

FIGURE 2-33: Large Signal Noninverting Pulse Response.

FIGURE 2-34: Large Signal Inverting Pulse Response.

FIGURE 2-35: The MCP6496/6R/6U/7/9 Device Shows No Phase Reversal.

MCP6496/6R/6U/7/9

Note: Unless otherwise indicated, T_A= +25°C, V_{DD} = +1.8V to +5.5V, V_{SS}= GND, V_{CM} = V_{DD}/4, V_{OUT} = V_{DD}/2, V_L = V_{DD}/2, R_L = 10 k Ω to V_L and C_L = 30 pF.

FIGURE 2-37: Start-up Time.

FIGURE 2-38: Overshoot vs. Capacitive Load.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1, Table 3-2, and Table 3-3.

MCP6496	MCP6496R	MCP6496U	Symbol	Description		
5-Lead SC70, SOT-23	5-Lead SOT-23	5-Lead SC70, SOT-23	Symbol	Description		
1	1	4	V _{OUT}	Analog Output		
2	5	2	V _{SS}	Negative Power Supply		
3	3	1	V _{IN} +	Noninverting Input		
4	4	3	V _{IN} -	Inverting Input		
5	2	5	V _{DD}	Positive Power Supply		

TABLE 3-1:PIN FUNCTION TABLE - SINGLES

TABLE 3-2: PIN FUNCTION TABLE - DUALS

MCP6497	Symbol	Description
8-Lead MSOP, SOIC	Symbol	Description
1	V _{OUTA}	Analog Output; Op Amp A
2	V _{INA} -	Inverting Input; Op Amp A
3	V _{INA} +	Noninverting Input; Op Amp A
4	V _{SS}	Negative Power Supply
5	V _{INB} +	Noninverting Input; Op Amp B
6	V _{INB} -	Inverting Input; Op Amp B
7	V _{OUTB}	Analog Output; Op Amp B
8	V _{DD}	Positive Power Supply

TABLE 3-3: PIN FUNCTION TABLE - QUADS

MCP6499	Symbol	Description
14-Lead TSSOP, SOIC	Symbol	Description
1	V _{OUTA}	Analog Output; Op Amp A
2	V _{INA} -	Inverting Input; Op Amp A
3	V _{INA} +	Noninverting Input; Op Amp A
4	V _{DD}	Positive Power Supply
5	V _{INB} +	Noninverting Input; Op Amp B
6	V _{INB} -	Inverting Input; Op Amp B
7	V _{OUTB}	Analog Output; Op Amp B
8	V _{OUTC}	Analog Output; Op Amp C
9	V _{INC} -	Inverting Input; Op Amp C
10	V _{INC} +	Noninverting Input; Op Amp C
11	V _{SS}	Negative Power Supply
12	V _{IND} +	Noninverting Input; Op Amp D
13	V _{IND} -	Inverting Input; Op Amp D
14	V _{OUTD}	Analog Output; Op Amp D

3.1 Analog Outputs

The analog output pins (V_{OUTx}) are low-impedance voltage sources.

3.2 Analog Inputs

The noninverting and inverting inputs (V_{INx} +, V_{INx} -) are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins (V_{SS}, V_{DD})

The positive power supply (V_{DD}) is 1.8V to 5.5V higher than the negative power supply (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} needs bypass capacitors.

4.0 APPLICATION INFORMATION

The MCP6496/6R/6U/7/9 operational amplifier is unity gain stable and suitable for a wide range of general-purpose applications.

4.1 Rail-to-Rail Input

4.1.1 PHASE REVERSAL

The MCP6496/6R/6U/7/9 op amp is designed to prevent phase reversal, when the input pins exceed the supply voltages. Figure 2-35 shows the input voltage exceeding the supply voltage with no phase reversal.

4.1.2 INPUT VOLTAGE LIMITS

In order to prevent damage and/or improper operation of the amplifier, the circuit must limit the voltages at the input pins (see Section 1.1, Absolute Maximum Ratings †).

The Electrostatic Discharge (ESD) protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors against many, but not all, overvoltage conditions, and to minimize the input bias current (I_B).

FIGURE 4-1: Simplified Analog Input ESD Structures.

The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS}. They also clamp any voltages that go well above V_{DD}; their breakdown voltage is high enough to allow normal operation. At 0.5V above V_{DD} or below V_{SS}, the input currents are typically less than 5 mA. Very fast ESD events that meet the specifications are limited so that damage does not occur.

4.1.3 INPUT CURRENT LIMITS

In order to prevent damage and/or improper operation of the amplifier, the circuit must limit the currents into the input pins (see Section 1.1, Absolute Maximum Ratings †).

Figure 4-2 shows one approach to protecting these inputs. The resistors R_1 and R_2 limit the possible currents in or out of the input pins through the ESD diodes to either V_{DD} or V_{SS} .

Protecting the Analog

4.1.4 NORMAL OPERATION

The input stage of the MCP6496/6R/6U/7/9 op amp uses two differential input stages in parallel. One operates at a low common mode input voltage (V_{CM}), while the other operates at a high V_{CM}. With this topology, the device operates with a V_{CM} up to 300 mV above V_{DD} and 300 mV below V_{SS}. The input offset voltage is measured at V_{CM} = V_{SS} - 0.3V and V_{DD} + 0.3V to ensure proper operation.

The transition between the input stages occurs when V_{CM} is near V_{DD} - 0.9V (see Figures 2-3 and 2-4). For the best distortion performance and gain linearity, with noninverting gains, avoid this region of operation.

4.2 Rail-to-Rail Output

The output voltage range of the MCP6496/6R/6U/7/9 op amp is 0.003V (typical) and 5.497V (typical) when $R_L = 10 \text{ k}\Omega$ is connected to $V_{DD}/2$ and $V_{DD} = 5.5V$. Refer to Figures 2-16 and 2-17 for more information.

4.3 Start-up

The MCP6496/6R/6U/7/9 family of parts quickly controls the output when power (V_{DD}) is initially applied to the device (start-up). Bypass capacitors are removed during the start-up testing to minimize the inrush currents (see Figure 4-3). When the op amp is controlled and is off, the output impedance is high and V_{OUT} is the input sine wave; this is used as the start-up time.

FIGURE 4-3: Start-up Test Circuit

Figure 4-4 shows the input voltage (blue line) for the MCP6497 and the output voltage (black line). When power is first applied to the MCP6497, the output is turned off (Point A) and is driven by the load. After 2 μ s (typical), the output is turned on (Point B) and V_{OUT} follows the input sine wave.

FIGURE 4-4: Start-Up Test Waveforms.

4.4 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases, and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. While a unity-gain buffer (G = +1 V/V) is the most sensitive to the capacitive loads, all gains show the same general behavior.

When driving large capacitive loads with the MCP6496/ 6R/6U/7/9 op amp, a small series resistor at the output (R_{ISO} in Figure 4-5) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitance load.

FIGURE 4-5: Output Resistor, R_{ISO} Stabilizes Large Capacitive Loads.

4.5 Supply Bypass

The MCP6496/6R/6U/7/9 op amp's power supply pin (V_{DD} for single-supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high frequency performance. It can use a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.

4.6 PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6496/6R/6U/7/9's bias current at +25°C (±1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-6.

FIGURE 4-6: Example Guard Ring Layout for Inverting Gain.

- 1. Noninverting Gain and Unity-Gain Buffer:
 - a) Connect the noninverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - b) Connect the guard ring to the inverting input pin (V_{IN}-). This biases the guard ring to the Common mode input voltage.
- 2. Inverting Gain and Transimpedance Gain Amplifiers (convert current to voltage, such as photo detectors):
 - a) Connect the guard ring to the noninverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the op amp (e.g., V_{DD}/2 or ground).
 - b) Connect the inverting pin (V_{IN} -) to the input with a wire that does not touch the PCB surface.

4.7 Unused Op Amps

An unused op amp in a dual (MCP6497) or quad (MCP6499) package should be configured as in shown in Figure 4-7. These circuits prevent the output from toggling and causing crosstalk. Circuit A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp; the op amp buffers that reference voltage. Circuit B uses the minimum number of components.

FIGURE 4-7: Unused Op Amps.

4.8 Electromagnetic Interference Rejection Ratio (EMIRR) Definitions

The electromagnetic interference (EMI) is the disturbance that affects an electrical circuit due to either electromagnetic induction or electromagnetic radiation emitted from an external source.

The parameter which describes the EMI robustness of an op amp is the Electromagnetic Interference Rejection Ratio (EMIRR). It quantitatively describes the effect that an RF interfering signal has on op amp performance. Internal passive filters make EMIRR better compared with older parts. This means that, with good PCB layout techniques, your EMC performance should be better.

EMIRR is defined in Equation 4-1.

EQUATION 4-1:

$$EMIRR(dB) = 20 \bullet log\left(\frac{V_{RF}}{\Delta V_{OS}}\right)$$

Where:

$$V_{RF}$$
 = Peak Amplitude of
RF Interfering Signal (V_{PK})
 ΔV_{OS} = Input Offset Voltage Shift (V)

4.9 Application Circuits

4.9.1 MULTIPLE FEEDBACK LOW-PASS FILTER

The MCP6496/6R/6U/7/9 op amp can be used in active-filter applications. Figure 4-8 shows an inverting, third-order, multiple feedback low-pass filter that can be used as an anti-aliasing filter.

FIGURE 4-8: Multiple Feedback Low-Pass Filter.

4.9.2 PHOTODIODE AMPLIFIER

Figure 4-9 shows a photodiode biased in the photovoltaic mode for high precision. The resistor R converts the diode current to the voltage V_{OUT} . The capacitor is used to limit the bandwidth or to stabilize the circuit against the diode's capacitance.

FIGURE 4-9:

Photodiode Amplifier.

5.0 DESIGN AIDS

Microchip provides the basic design tools needed for the MCP6496/6R/6U/7/9 op amp.

5.1 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps semiconductor professionals efficiently identify the Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website at www.microchip.com/maps, MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for data sheets, purchase and sampling of Microchip parts.

5.2 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip website at www.microchipdirect.com.

Some boards that are especially useful are:

- MCP6XXX Amplifier Evaluation Board 2 (P/N DS51668)
- MCP6XXX Amplifier Evaluation Board 3 (P/N DS51673)
- 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board (P/N SOIC8EV)
- 5/6-Pin SOT-23 Evaluation Board (P/N VSUEV2)
- 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N SOIC14EV)

5.3 Application Notes

The following Microchip Analog Design Note and Application Notes are available on the Microchip website at www.microchip.com/appnotes, and are recommended as supplemental reference resources.

- ADN003 "Select the Right Operational Amplifier for your Filtering Circuits", DS21821
- AN722 "Operational Amplifier Topologies and DC Specifications", DS00722
- AN723 "Operational Amplifier AC Specifications and Applications", DS00723
- AN884 "Driving Capacitive Loads With Op Amps", DS00884
- AN990 "Analog Sensor Conditioning Circuits An Overview", DS00990
- AN1177 "Op Amp Precision Design: DC Errors", DS01177
- AN1228 "Op Amp Precision Design: Random Noise", DS01228
- AN1258 "Op Amp Precision Design: PCB Layout Techniques", DS01258

These application notes and others are listed in the design guide:

• "Signal Chain Design Guide", DS21825

MCP6496/6R/6U/7/9

NOTES:

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

5-Lead SC-70 (MCP6496/6U)

Device	Marking
MCP6496	HCNN
MCP6496U	HDNN

Note: Applies to 5-Lead SC-70.

5-Lead SOT-23 (MCP6496/6R/6U)

Device	Marking
MCP6496	AAD4Y
MCP6496R	AAD6Y
MCP6496U	AAD5Y

Note: Applies to 5-Lead SOT-23.

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

Package Marking Information (Continued)

14-Lead TSSOP (MCP6499)

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-061-LT Rev E Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		5		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	-	1.10	
Standoff	A1	0.00	-	0.10	
Molded Package Thickness	A2	0.80 - 1.00			
Overall Length	D	2.00 BSC			
Overall Width	Е	2.10 BSC			
Molded Package Width	E1	1.25 BSC			
Terminal Width	b	0.15	-	0.40	
Terminal Length	L	0.10	0.20	0.46	
Lead Thickness	С	0.08	-	0.26	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-061-LT Rev E Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		2.20	
Contact Pad Width	Х			0.45
Contact Pad Length	Y			0.95
Distance Between Pads	G	1.25		
Distance Between Pads	Gx	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2061-LT Rev E

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-091-OT Rev H Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SHEET 1

	Units			S	
Dimension	Dimension Limits		NOM	MAX	
Number of Pins	Ν		5		
Pitch	е		0.95 BSC		
Outside lead pitch	e1		1.90 BSC		
Overall Height	Α	0.90	1.45		
Molded Package Thickness	A2	0.89	1.30		
Standoff	A1			0.15	
Overall Width	E	2.80 BSC			
Molded Package Width	E1		1.60 BSC		
Overall Length	D		2.90 BSC		
Foot Length	L	0.30	-	0.60	
Footprint	L1	0.60 REF			
Foot Angle	θ	0°	-	10°	
Lead Thickness	С	0.08	-	0.26	
Lead Width	b	0.20	-	0.51	

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev H Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.95 BSC		
Contact Pad Spacing	С		2.80		
Contact Pad Width (X5)	Х			0.60	
Contact Pad Length (X5)	ontact Pad Length (X5) Y			1.10	
Distance Between Pads	G	1.70			
Distance Between Pads	GX	0.35			
Overall Width	Z			3.90	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-CT Rev H

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (Optional)	h	0.25	—	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Thickness	С	0.17	—	0.25
Lead Width	b	0.31	-	0.51
Lead Bend Radius	R	0.07	-	-
Lead Bend Radius	R1	0.07	_	_
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	_	15°
Lead Angle	θ2	0°	_	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. BEE: Reference Dimension, usually without tolerance, for information purposes of the provide tolerance.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX
Number of Terminals	N		8	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	1.10
Standoff	A1	0.00	-	0.15
Molded Package Thickness	A2	0.75	0.85	0.95
Overall Length	D	3.00 BSC		
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Terminal Width	b	0.22	-	0.40
Terminal Thickness	С	0.08	-	0.23
Terminal Length	L	0.40	0.60	0.80
Footprint	L1		0.95 REF	
Lead Bend Radius	R	0.07 – –		
Lead Bend Radius	R1	0.07 – –		
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

- protrusions shall not exceed 0.15mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С	4.40		
Contact Pad Width (X8)	ntact Pad Width (X8) X			0.45
Contact Pad Length (X8)	Y			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6) GX		0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-MS Rev F

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5° - 15		
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X14)	Х			0.60
Contact Pad Length (X14)	Y			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087 Rev E Sheet 1 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S
Dimensior	Dimension Limits			MAX
Number of Terminals	N		14	
Pitch	е		0.65 BSC	
Overall Height	А	-	_	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.80	1.00	1.05
Overall Length	D	4.90	5.00	5.10
Overall Width	E	6.40 BSC		
Molded Package Width	E1		4.40	4.50
Terminal Width	b	0.19 – 0		
Terminal Thickness	С	0.09	-	0.20
Terminal Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Lead Bend Radius	R1	0.09	_	—
Lead Bend Radius	R2	0.09	_	—
Foot Angle	θ1	0°	_	8°
Mold Draft Angle	θ2	-	12° REF	_
Mold Draft Angle	θ3	-	12° REF	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087 Rev E Sheet 2 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		5.90	
Contact Pad Width (Xnn)	Х			0.45
Contact Pad Length (Xnn)	Y			1.45
Contact Pad to Contact Pad (Xnn)	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2087 Rev E

APPENDIX A: REVISION HISTORY

Revision A (December 2022)

• Initial release of this document.

MCP6496/6R/6U/7/9

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>X</u> (1)	<u>-X</u>	<u>/xx</u>	<u>XXX⁽ 2⁾</u>	Examples:	
Device	Tape and Doption	Reel Temperature Range	Package	CLASS	a) MCP6496T-E/LT:	Tape and Reel, Extended temperature, 5LD SC-70 package
Device:	MCP6496 MCP6496T	Single Op Amp Single Op Amp (Ta (SC-70, SOT-23)	pe and Reel)		b)MCP6496T-E/OT:	Tape and Reel, Extended temperature, 5LD SOT-23 package
	MCP6496RT MCP6496UT	Single Op Amp (Ta Single Op Amp (Ta	,	(SOT-23)	c)MCP6496RT-E/OT:	Tape and Reel, Extended temperature, 5LD SOT-23 package
	MCP6497 MCP6497T	(SC-70, SOT-23) Dual Op Amp Dual Op Amp			d)MCP6496UT-E/LT:	Tape and Reel, Extended temperature, 5LD SC-70 package
	MCP6499 MCP6499T	(Tape and Reel for Quad Op Amp Quad Op Amp	SOIC, MSOP	?)	e)MCP6496UT-E/OT:	Tape and Reel, Extended temperature, 5LD SOT-23 package
		(Tape and Reel for		SOIC)	a)MCP6497-E/SN:	Extended temperature, 8LD SOIC package
Temperatu Package:	0	 -40°C to +125°C stic Package (SC-70 			b)MCP6497-E/MS:	Extended temperature, 8LD MSOP package
i ackage.	(MC OT = Plas	CP6496 only) stic Small Outline tra		23), 5-lead	c)MCP6497T-E/SN:	Tape and Reel, Extended temperature, 8LD SOIC package
	SN = Plas	CP6496 only) stic Small Outline, (3 CP6497 only)	.90 mm), 8-le	ad	d)MCP6497T-E/MS:	Tape and Reel, Extended temperature, 8LD MSOP package
	(MC	stic MSOP, 8-lead CP6497 only)			a)MCP6499-E/ST:	Extended temperature, 14LD TSSOP package
	14-I	stic Thin Shrink Sma lead (MCP6499 only))		b)MCP6499-E/SL:	Extended temperature, 14LD SOIC package
Class:		stic Small Outline, (3 CP6499 only) n-Automotive	.90 mm), 14-l	ead	c)MCP6499T-E/SL:	Tape and Reel, Extended temperature, 14LD SOIC package
	VAO = Auto	omotive			d)MCP6499T-E/ST:	Tape and Reel, Extended temperature, 14LD TSSOP package
Note 1:	part numbe ordering pu	d Reel identifier or r description. Thi rposes and is no	s identifier t printed or	is used for n the device		
		neck with your Mi ailability with the Ta				
2:	Automotive	parts are AEC-Q10	00 qualified.	Grade 1.		

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office

<u>PART NO.</u>	$\underline{X}^{(1)}$ $\underline{X}^{(2)}$	Examples:	
Device	Tape and Reel Temperature Package CLASS Option Range	a) MCP6496T-E/LTVAO:	Tape and Reel, Automotive, Extended temperature, 5LD SC-70 package
Device:	MCP6496 Single Op Amp MCP6496T Single Op Amp (Tape and Reel) (SC-70, SOT-23) MCP6496RT Single Op Amp (Tape and Reel) (SOT-23)	b)MCP6496T-E/OTVAO:	Tape and Reel, Automotive, Extended temperature, 5LD SOT-23 package
	MCP6496UT Single Op Amp (Tape and Reel) (SC-70, SOT-23) MCP6497 Dual Op Amp	c)MCP6496RT-E/OTVAO:	Tape and Reel, Automotive, Extended temperature,
	MCP6497T Dual Op Amp (Tape and Reel for SOIC, MSOP) MCP6499 Quad Op Amp	d)MCP6496UT-E/LTVAO:	5LD SOT-23 package Tape and Reel, Automotive, Extended temperature,
Temperatu	MCP6499T Quad Op Amp (Tape and Reel for TSSOP and SOIC) re Range: E = -40°C to +125°C	e)MCP6496UT-E/OTVAO:	5LD SC-70 package Tape and Reel, Automotive, Extended temperature, 5LD SOT-23 package
Package:	LT = Plastic Package (SC-70), 5-lead (MCP6496 only) OT = Plastic Small Outline transistor (SOT-23), 5-lead (MCP6496 only)	a)MCP6497T-E/SNVAO:	Tape and Reel, Extended temperature, Automotive, 8LD SOIC package
	SN = Plastic Small Outline, (3.90 mm), 8-lead (MCP6497 only) MS = Plastic MSOP, 8-lead (MCP6497 only)	b)MCP6497T-E/MSVAO:	Tape and Reel, Extended temperature, Automotive, 8LD MSOP package
	ST = Plastic Thin Shrink Small Outline (4.4 mm), 14-lead (MCP6499 only) SL = Plastic Small Outline, (3.90 mm), 14-lead (MCP6499 only)	a)MCP6499T-E/STVAO:	Tape and Reel, Extended temperature, Automotive, 14LD TSSOP package
Class:	(Blank) = Non-Automotive VAO = Automotive	b)MCP6499T-E/SLVAO:	Tape and Reel, Extended temperature, Automotive, 14LD SOIC package
Note 1:	The Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.		
2:	Automotive parts are AEC-Q100 qualified. Grade 1.		

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1708-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820