

C3M0075120K

Silicon Carbide Power MOSFET C3M[™] MOSFET Technology

N-Channel Enhancement Mode

Features

- 3rd generation SiC MOSFET technology
- Optimized package with separate driver source pin
- 8mm of creepage distance between drain and source
- High blocking voltage with low on-resistance
- High-speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Q_{rr})
- Halogen free, RoHS compliant

Benefits

- Reduce switching losses and minimize gate ringing
- Higher system efficiency
- Reduce cooling requirements
- Increase power density
- Increase system switching frequency

Applications

- Renewable energy
- EV battery chargers
- High voltage DC/DC convertersSwitch Mode Power Supplies
- Ordering Part Number
 Package
 Marking
 T_J , T_{stg} Range

 C3M0075120K
 T0 247-4
 C3M0075120K
 -55 - 150 °C

 C3M0075120K-A
 T0 247-4
 C3M0075120K-A
 -40 - 175 °C

Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{DSmax}	Drain - Source Voltage	1200	V	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage (dynamic)	-8/+19	V	AC (f >1 Hz)	Note: 1
V_{GSop}	Gate - Source Voltage (static)	-4/+15	V	Static	Note: 2
	Continuous Drain Current	32	Α	V _{GS} = 15 V, T _C = 25°C	Fig. 19
I _D		23	A	V _{GS} = 15 V, T _C = 100°C	
$I_{D(pulse)}$	Pulsed Drain Current	80	А	Pulse width t_P limited by T_{jmax}	Fig. 22
P _D	Power Dissipation	136	W	T _c =25°C, T _J = 175 °C	Fig. 20
T _J , T _{stg}	Operating Junction and Storage Temperature	-40 to +175	°C		
Τ _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	

Note (1): When using MOSFET Body Diode V_{GSmax} = -4V/+19V Note (2): MOSFET can also safely operate at 0/+15 V

Package

 $\mathbf{V}_{\rm DS}$

I_D @ 25°C

 $\mathbf{R}_{\mathsf{DS(on)}}$

1200 V

32 A 75 mΩ

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			V	V _{GS} = 0 V, I _D = 100 µA	
	Gate Threshold Voltage	1.8	2.5	3.6	V	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	— Fig. 11
$V_{\text{GS(th)}}$	Gate Threshold Voltage		2.2		V	V_{DS} = V_{GS} , I_{D} = 5 mA, T_{J} = 175°C	
I _{DSS}	Zero Gate Voltage Drain Current		1	50	μA	V _{DS} = 1200 V, V _{GS} = 0 V	
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V_{GS} = 15 V, V_{DS} = 0 V	
R	Drain-Source On-State Resistance		75	90	mΩ	V _{GS} = 15 V, I _D = 20 A	Fig. 4,
R _{DS(on)}			120		11152	V_{GS} = 15 V, I _D = 20A, T _J = 175°C	5, 6
C,	Transconductance		12		s	V _{DS} = 20 V, I _{DS} = 20 A	Fig. 7
g fs	Transconductance		13		3	V _{DS} = 20 V, I _{DS} = 20 A, T _J = 175°C	Fig. 7
C_{iss}	Input Capacitance		1390				
C_{oss}	Output Capacitance		58			V _{GS} = 0 V, V _{DS} = 1000 V f = 1 MHz V _{AC} = 25 mV	Fig. 17, 18
C_{rss}	Reverse Transfer Capacitance		2				
E _{oss}	Coss Stored Energy		33		μJ		Fig. 16
Eon	Turn-On Switching Energy (Body Diode FWD)		270			V_{DS} = 800 V, V_{GS} = -4 V/15 V, I_{D} = 20A, R _{G(ext)} = 0 Ω, L= 156 µH, T _J = 150°C	Fig. 26,
EOFF	Turn-Off Switching Energy (Body Diode FWD)		77		μJ		29
$t_{\text{d(on)}}$	Turn-On Delay Time		30			V_{DD} = 800 V, V_{GS} = -4 V/15 V I _D = 20 A, $R_{G(ext)}$ = 0 Ω,	
tr	Rise Time		14				Fig. 27, 28
$t_{\text{d(off)}}$	Turn-Off Delay Time		38		ns .	Timing relative to V _{DS} Inductive load	
t _f	Fall Time		10				
$R_{G(int)}$	Internal Gate Resistance		9.0		Ω	f = 1 MHz, V _{AC} = 25 mV	
Q_{gs}	Gate to Source Charge		17			V _{DS} = 800 V, V _{GS} = -4 V/15 V	
Q_{gd}	Gate to Drain Charge		18		nC	$I_D = 20 \text{ A}$	Fig. 12
Qg	Total Gate Charge		53	7		Per IEC60747-8-4 pg 21	

Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unles1s otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
N		4.5		V	V _{GS} = -4 V, I _{SD} = 10 A	Fig. 8,
V _{SD}	Diode Forward Voltage	4.0		V	V _{GS} = -4 V, I _{SD} = 10 A, T _J = 175 °C	9,10
Is	Continuous Diode Forward Current		26	А	V _{GS} = -4 V, T _J = 25 °C	Note 1
I _{S, pulse}	Diode pulse Current	80		А	V_{GS} = -4 V, pulse width t _P limited by T _{jmax}	Note 1
t _{rr}	Reverse Recover time	20		ns		
Q _{rr}	Reverse Recovery Charge	254		nC	V _{GS} = -4 V, I _{SD} = 20 A, V _R = 800 V dif/dt = 3600 A/μs, Τ _J = 150 °C	Note 1
l _{rrm}	Peak Reverse Recovery Current	18		А		

Thermal Characteristics

Symbol	Parameter	Max.	Unit	Test Conditions	Note
R _{eJC}	Thermal Resistance from Junction to Case	1.1			5. 01
R _{0JA}	Thermal Resistance From Junction to Ambient	40	°C/W		Fig. 21

Figure 1. Output Characteristics T_J = -40 °C

Figure 2. Output Characteristics T_J = 25 °C

Figure 13. 3rd Quadrant Characteristic at -40 °C

Figure 15. 3rd Quadrant Characteristic at 175 °C

Figure 16. Output Capacitor Stored Energy

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V)

Figure 20. Maximum Power Dissipation Derating vs. Case Temperature

Figure 25. Clamped Inductive Switching Energy vs. $R_{G(ext)}$

Figure 27. Switching Times vs. $R_{G(ext)}$

Figure 26. Clamped Inductive Switching Energy vs. Temperature

Figure 28. Switching Times Definition

Test Circuit Schematic

Figure 29. Clamped Inductive Switching Waveform Test Circuit

Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.

Package Dimensions

Package TO-247-4L

Package Dimensions

Package TO-247-4L

NOTE;

Г

- 1. ALL METAL SURFACES: TIN PLATED, EXCEPT AREA OF CUT
- 2. DIMENSIONING & TOLERANCEING CONFIRM TO ASME Y14.5M-1994.
- 3. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

4. 'N'	' IS THE NUMBER OF TE	RMINAL POSITIONS
	MILLIMETERS	MI

SYM	MILLIMETERS					
51101	MIN	MAX				
Α	4.83	5.21				
A1	2.29	2.54				
A2	1.91	2.16				
b`	1.07	1.28				
b	1.07	1.33				
b1	2.39	2.94				
b2	2.39	2.84				
b3	1.07	1.60				
b4	1.07	1.50				
b5	2.39	2.69				
b6	2.39	2.64				
b7	1.30	1.70				
c`	0.55	0.65				
С	0.55	0.68				
D	23.30	23.60				
D1	16.25	17.65				
D2	0.95	1.25				
E	15.75	16.13				

SYM	MILLIMETERS				
51101	MIN	MAX			
E1	13.10	14.15			
E2	3.68	5.10			
E3	1.00	1.90			
E4	12.38	13.43			
е	2.54	BSC			
e1	5.08 BSC				
N*	4				
L	17.31	17.82			
L1	3.97	4.37			
L2	2.35	2.65			
ØР	3.51	3.65			
Q	5.49	6.00			
S	6.04	6.30			
Т	17.5° REF.				
W	3.5° REF.				
Х	4° REF.				

10

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- SPICE Models: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support

Copyright © 2021 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5451 Fax: +1.919.313.5451 www.wolfspeed.com/power