

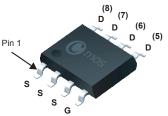
N-Channel Enhancement Mode MOSFET

General Description

The CMS65N03 uses advanced trench technology to provide excellent RDS(ON). This device is suitable for use as a synchronous switch in PWM applications.

Features

- RDS(ON)≤6.8mΩ @ VGS=10V
- RDS(ON)≤12mΩ @ VGS=4.5V
- Surface mount package.
- RoHS Compliant


Product Summary


BVDSS	RDSON	ID
30V	6.8mΩ	13A

Applications

- DC/DC Converter
- Synchronous Rectifier
- Load Switch
- Battery protection

SOP-8 Pin Configuration

SOP-8

Туре	Package	Marking
CMS65N03	SOP-8	CMS65N03

Absolute Maximum Ratings (TA=25℃ Unless Otherwise Noted)

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	30	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D	Continuous Drain Current	13	А	
I _{DM}	Pulsed Drain Current	52	А	
EAS	Single Pulse Avalanche Energy Note 1	120	mJ	
P _D	Total Power Dissipation	2	W	
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{θJA}	Thermal Resistance, Junction-to-Ambient		50	°C/W	

N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250 μ A	30			V
_	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =12A			6.8	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =8A			12	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250μA	1		3	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V_{DS} =5 V , I_{D} =8 A		18		S
Q_g	Total Gate Charge	V _{DD} =15V, I _D =16A		15		
Q_gs	Gate-Source Charge	V _{GS} =0 to 4.5V		6.5		nC
Q_{gd}	Gate-Drain Charge			3.5		
$T_{d(on)}$	Turn-On Delay Time			12.5		
T _r	Rise Time	V_{DD} =15V , V_{GS} =4.5V , I_{D} =16A R_{G} =1.6 Ω		6.5		20
$T_{d(off)}$	Turn-Off Delay Time			15.5		ns
T _f	Fall Time			6.5		
C _{iss}	Input Capacitance	V _{DS} =10V , V _{GS} =0V , f=1MHz		2000		
Coss	Output Capacitance			710		pF
C _{rss}	Reverse Transfer Capacitance			50		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	-V _G =V _D =0V , Force Current			13	Α
I _{SM}	Pulsed Source Current				40	Α
V_{SD}	Diode Forward Voltage	V_{GS} =0V , I_{S} =12A , T_{J} =25 $^{\circ}$ C			1.2	V

Note:

1. The test condition is VDD=15V, VGS=10V, L=0.5 mH, IAS=22A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability without notice.