

General Description

The CMP90P06 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. It can be used in a wide variety of applications.

Features

- P-Channel
- Fast Switching
- Simple Drive Requirements
- RoHS Compliant

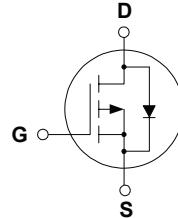
Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	-60	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_C = 25^\circ C$	Continuous Drain Current	-90	A
I_{DM}	Pulsed Drain Current	-270	A
EAS	Single Pulse Avalanche Energy	500	mJ
$P_D @ T_C = 25^\circ C$	Total Power Dissipation	200	W
T_{STG}	Storage Temperature Range	-55 to 175	°C
T_J	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient	---	62	°C/W
$R_{\theta JC}$	Thermal Resistance Junction-case	---	0.75	°C/W

Product Summary


BVDSS	RDSON	ID
-60V	10mΩ	-90A

Applications

- Inverters
- Motor drive
- DC / DC converter

TO-220 Pin Configuration

TO-220
(CMP90P06)

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{D}}=-250\text{\textmu A}$	-60	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=-10\text{V}$, $\text{I}_{\text{D}}=-20\text{\textmu A}$	---	---	10	$\text{m}\Omega$
		$\text{V}_{\text{GS}}=-4.5\text{V}$, $\text{I}_{\text{D}}=-10\text{A}$	---	---	12	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_{\text{D}}=-250\text{\textmu A}$	-1	---	-2.5	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=-60\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	-100	\textmu A
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=-10\text{V}$, $\text{I}_{\text{D}}=-15\text{A}$	---	27	---	S
Q_{g}	Total Gate Charge	$\text{I}_{\text{D}}=-38\text{A}$	---	150	---	nC
Q_{gs}	Gate-Source Charge	$\text{V}_{\text{DS}}=-44\text{V}$	---	25	---	
Q_{gd}	Gate-Drain Charge	$\text{V}_{\text{GS}}=-10\text{V}$	---	70	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DS}}=-28\text{V}$	---	20	---	ns
T_{r}	Rise Time	$\text{I}_{\text{D}}=-38\text{A}$	---	100	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time	$\text{R}_{\text{G}}=2.5\Omega \boxtimes$	---	60	---	
T_{f}	Fall Time	$\text{R}_{\text{D}}=0.72\Omega$	---	95	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=-25\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	12000	---	pF
C_{oss}	Output Capacitance		---	1000	---	
C_{rss}	Reverse Transfer Capacitance		---	450	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{S}	Continuous Source Current	$\text{V}_{\text{G}}=\text{V}_{\text{D}}=0\text{V}$, Force Current	---	---	-90	A
I_{SM}	Pulsed Source Current		---	---	-270	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_{\text{S}}=-10\text{A}$, $\text{T}_{\text{J}}=25^\circ\text{C}$	---	---	1.2	V
t_{rr}	Reverse Recovery Time	$\text{I}_{\text{F}}=-38\text{V}$, $\text{T}_{\text{J}}=25^\circ\text{C}$	---	90	---	ns
		$\text{d}_{\text{I}_{\text{F}}/\text{dt}}=100 \text{ A}/\mu\text{s}$	---	230	---	nC

This product has been designed and qualified for the consumer market.
 Cmos assumes no liability for customers' product design or applications.
 Cmos reserves the right to improve product design ,functions and reliability without notice.