

25V N-Channel MOSFET

General Description

The 0702C combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON). This device is ideal for load switch and battery protection applications.

Features

- Simple Drive Requirement
- Ultra-Low RDS(on)
- RoHS Compliant

Product Summary

BVDSS	RDSON	ID
25V	8mΩ	50A

Applications

- Server
- DC/DC converter
- Motor drives

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	25	V
V_{GS}	Gate-Source Voltage	±12	V
I _D @T _C =25℃	Continuous Drain Current	50	Α
I _D @T _C =100℃	Continuous Drain Current	35	Α
I _{DM}	Pulsed Drain Current ¹	150	А
EAS	Avalanche energy ²	47	mJ
P _D @T _C =25℃	Total Power Dissipation	50	W
T _{STG}	Storage Temperature Range -55 to 17		$^{\circ}$
T _J	Operating Junction Temperature Range	-55 to 175	$^{\circ}$ C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient(Steady-State) ³		50	°C/W
R _{θJC}	Thermal Resistance Junction -Case(Steady-State) 4		3	°C/W

CMD0702C/CMU0702C

25V N-Channel MOSFET

Electrical Characteristics (T_J =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	25			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V , I_D =20A			8	mΩ
TVDS(ON)		V _{GS} =4.5V , I _D =15A			9.5	
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1		2.5	V
-	Drain-Source Leakage Current	V_{DS} =24V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			1	uA
I _{DSS}		V_{DS} =24V , V_{GS} =0V , T_{J} =55 $^{\circ}$ C			5	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±12V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		20		S
Qg	Total Gate Charge	V _{DS} =12.5V , V _{GS} =10V , I _D =30A		30		
Q _{gs}	Gate-Source Charge			4.5		nC
Q_gd	Gate-Drain Charge			9		
$T_{d(on)}$	Turn-On Delay Time	V_{DS} =12.5V, V_{GS} =10V, R_{GEN} =3 Ω		10		
Tr	Rise Time			12		no
$T_{d(off)}$	Turn-Off Delay Time			30		ns
T _f	Fall Time			11		
C _{iss}	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		1500		
Coss	Output Capacitance			400		pF
C _{rss}	Reverse Transfer Capacitance			200		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =20A			1.2	V

Note

- 1. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175 $^{\circ}\!\!\mathrm{C}$.
- 2. The EAS data shows Max. rating . The test condition is VDD=20V, VGS=10V, L=0.5mH, ID=13.8A
- 3. The value of Reja is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on Reja and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allow s it.
- 4. The power dissipation PD is based on TJ(MAX)=175℃, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.