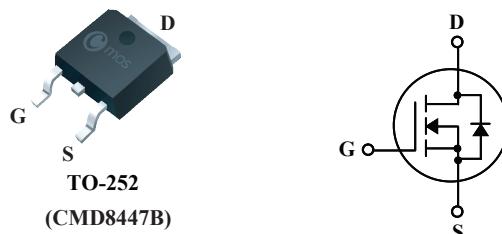


General Description

This N-Channel MOSFET has been produced using advanced trench technology to deliver low RDS(on) and optimized BVDSS capability to offer superior performance benefit in the application

Features


- Max $r_{DS(on)} = 15.5\text{m}\Omega$ at $V_{GS} = 10\text{V}$
- Max $r_{DS(on)} = 21\text{m}\Omega$ at $V_{GS} = 4.5\text{V}$
- Fast Switching
- RoHS Compliant

Absolute Maximum Ratings**Product Summary**

BVDSS	RDS(on)	ID
40V	15.5mΩ	50A

Applications

- Inverters
- Power Supplies

TO-252 Pin Configuration

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	40	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_C = 25^\circ\text{C}$	Continuous Drain Current	50	A
I_{DM}	Pulsed Drain Current	150	A
E_{AS}	Drain-Source Avalanche Energy ¹	100	mJ
$P_D @ T_C = 25^\circ\text{C}$	Total Power Dissipation	45	W
T_{STG}	Storage Temperature Range	-55 to 150	$^\circ\text{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^\circ\text{C}$

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient	---	40	$^\circ\text{C}/\text{W}$
$R_{\theta JC}$	Thermal Resistance Junction-case	---	2.8	$^\circ\text{C}/\text{W}$

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_D=250\text{uA}$	40	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance ²	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_D=18\text{A}$	---	---	15.5	$\text{m}\Omega$
		$\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_D=15\text{A}$	---	---	21	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_D=250\text{uA}$	1	---	3	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=32\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	1	uA
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance ²	$\text{V}_{\text{DS}}=10\text{V}$, $\text{I}_D=10\text{A}$	---	10	---	S
Q_{g}	Total Gate Charge	$\text{I}_D=25\text{A}$	---	18	---	nC
Q_{gs}	Gate-Source Charge	$\text{V}_{\text{DS}}=20\text{V}$	---	3	---	
Q_{gd}	Gate-Drain Charge	$\text{V}_{\text{GS}}=10\text{V}$	---	5	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DS}}=20\text{V}$	---	8	---	ns
T_{r}	Rise Time	$\text{I}_D=25\text{A}$	---	15	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time	$\text{R}_{\text{GEN}}=6\Omega$	---	32	---	
T_{f}	Fall Time	$\text{V}_{\text{GS}}=10\text{V}$	---	7	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=20\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $\text{f}=1\text{MHz}$	---	1400	---	pF
C_{oss}	Output Capacitance		---	200	---	
C_{rss}	Reverse Transfer Capacitance		---	90	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t_{rr}	Reverse Recovery Time	$\text{I}_F=25\text{A}$ $\text{di}/\text{dt}=100\text{A}/\mu\text{s}$	---	15	---	ns
Q_{rr}	Reverse Recovery Charge		---	30	---	nC
V_{SD}	Diode Forward Voltage ²	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_S=1.8\text{ A}$	---	---	1.2	V

Notes:

- Starting $T_J = 25^\circ\text{C}$, $L = 0.5\text{mH}$, $\text{I}_D = 20\text{ A}$, $\text{V}_{\text{DD}} = 40\text{ V}$, $\text{V}_{\text{GS}} = 10\text{ V}$.
- Pulse Test: Pulse Width < 300 μs , Duty cycle < 2.0%.

This product has been designed and qualified for the consumer market.
 Cmos assumes no liability for customers' product design or applications.
 Cmos reserves the right to improve product design, functions and reliability without notice.