

线性锂离子电池充电器

特性

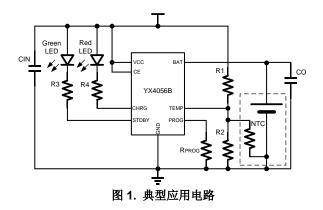
- ❖ 高达 1A 的可编程充电电流
- ❖ 无需 MOSFET、检测电阻或隔离二极管
- ❖ 恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能
- ❖ 直接从 USB 端口给单节锂离子电池充电
- ❖ 精度达到 1%的 4.2V 预设充电终止电压
- ❖ 用于电池电量检测的充电电流监控器输出
- ❖ 自动再充电
- ❖ 充电状态输出引脚
- ❖ C/10 充电终止
- ❖ 停机模式下的供电电流为 55µA
- ❖ 2.9V 涓流充电
- ❖ 软启动限制浪涌电流
- ❖ 防电池反接
- ❖ ESOP8 绿色封装

应用范围

- ❖ 移动电话, PDAs, MP3 播放器
- ❖ USB 3G 数据卡
- ❖ 电池充电电路
- ❖ 蓝牙应用
- ❖ 其它手持设备

描述

YX4056B 是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部带散热的 SOP8 封装与较少的外部元件数目使得 YX4056B 成为便携式应用的理想选择。YX4056B 可以适合 USB 电源和适配器电源工作。


由于采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻和隔离二极管。热反馈可对充电电流进行调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于 4.2V,而充电电流可通过一个电阻进行外部设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,YX4056B 将自动终止充电循环。

当输入电压(交流适配器或 USB 电源)被拿掉时,YX4056B 自动进入一个低电流状态,将电池漏电流降至 2μA 以下。也可将 YX4056B 置于停机模式,从而将供电电流降至 55μA。YX4056B 的其它特点包括充电电流监控器、欠压闭锁、自动再充电和一个用于指示充电结束和输入电压接入的状态引脚。

YX4056B 内部集成有防电池反接保护电路,可防止应用中电池反造成的芯片损坏。

YX4056B采用绿色环保的ESOP8封装以及最少3个外围器件可有效减小电路PCB布板空间。YX4056B可工作于-40°C to +85°C。

典型应用

Ver1.0 www.shiningic.com

Copyright @ 2009-2016

订购信息

器件型号	订购号	封装描述	 环境温度 	 封装标记	包装选择	包装数量
YX4056B	YX4056BAQGR	ESOP8	-40°C to +85°C	YX4056B	Tape and Reel	3000
	YX4056BAWGR	TDFN-3×3-8L	-40°C to +85°C	YX4056B	Tape and Reel	5000

引脚信息

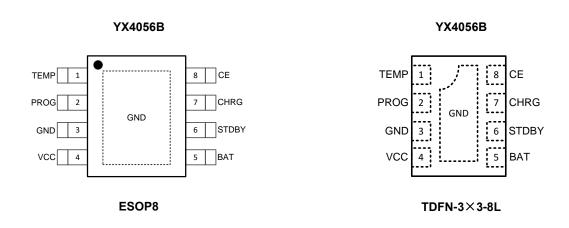


表 1. 引脚描述

引脚	名称	引脚功能描述
1	TEMP	电池温度检测输入端
2	PROG	恒流充电电流设置和充电电流监测端
3	GND	地
4	VCC	电源输入引脚
5	BAT	充电电流输出引脚
6	STDBY	开漏输出的充电完成指示端
7	CHRG	开漏输出的充电状态指示端
8	CE	芯片使能引脚,高电平有效
9	Thermal PAD	散热片,连接到地。

绝对最大额定范围

描述	范围	单位	
电源电压 (VCC)	-0.3 ~ 6	V	
电池引脚 (BAT)	-4.5~5	V	
其它引脚	-0.3 ~ 6	V	
存储温度范围	-65 ~ +150	°C	
结温	150	ů	
焊接温度	260	ů	
静态放电(ESD)	HBM (Human Body Mode)	4000	٧
お恋似虫(こう)	CDM (Charge Device Mode)	250	V

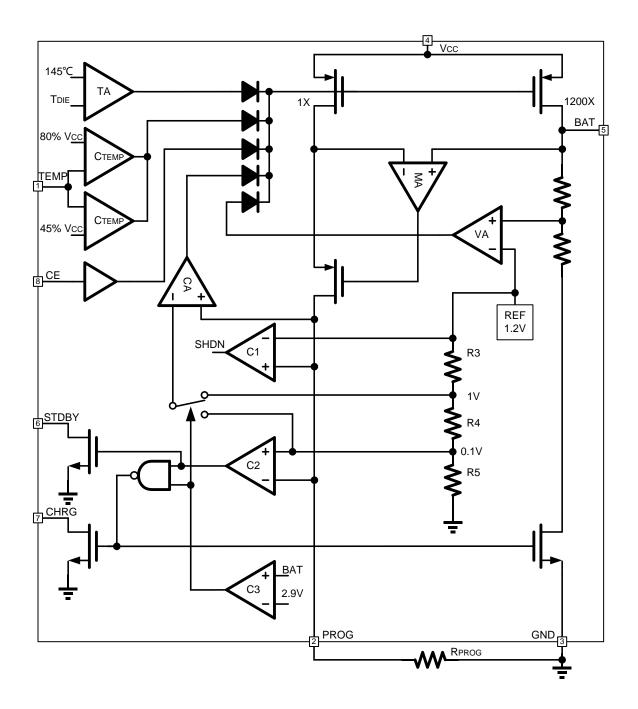
热损耗信息

描述		范围	单位
封装热阻 (θ _{JA})	ESOP8	50	°C/W
到表於阻(OJA)	TDFN-3×3-8L	80	°C/W
Th## D- @T. 25%C	ESOP8	2.1	W
功耗, Po@Ta=25℃	TDFN-3×3-8L	1.3	W

推荐工作条件

描述	范围	单位
工作结温	-40 ~ 125	ů
工作环境温度	-40 ~ 85	ů
电源电压	+2.5 ~ +5.5	V
连续输出电流 (ESOP8)	1	А

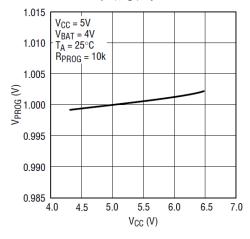
Ver1.0 3 Copyright @ 2009-2016

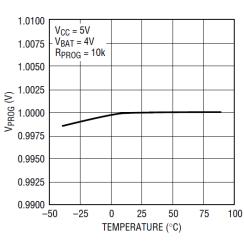

电特性

(V_{IN} = 5.0V, T_A = 25°C, 除非特别说明。)

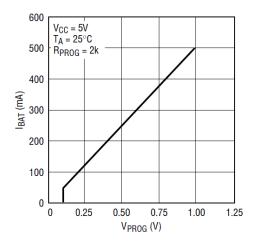
参数	符号	测试条件	最小值	典型值	最大值	单位
输入电源电压	V _{CC}		4.0	5	5.5	V
		充电模式,R _{PROG} =1.2k		150	500	μΑ
静态电流	ΙQ	待机模式(充电终止)		55	100	μΑ
		停机模式(R _{PROG} 未连接, V _{CC} < V _{BAT} , or V _{CC} < V _{UV})		55	100	μΑ
稳定输出(浮充)电压	V_{FLOAT}	0°C≤T _A ≤85°C, IBAT = 40mA	4.158	4.200	4.242	V
		R _{PROG} = 2.4k, 电流模式	400	500	550	mA
		R _{PROG} = 1.2k, 电流模式	950	1000	1050	mA
BAT 引脚电流	I _{BAT}	待机模式, V _{BAT} = 4.2V	0	-2.5	-6	μΑ
		停机模式 (R _{PROG} 未连接)		±1	±2	μΑ
		睡眠模式, V _{CC} = 0V		-1	-2	μΑ
涓流充电电流	I _{TRIKL}	V _{BAT} < V _{TRIKL} , R _{PROG} = 1.2k	110	120	130	mA
涓流充电门限电压	V_{TRIKL}	R _{PROG} = 1.2k, VBAT 上升	2.8	2.9	3.0	V
涓流充电迟滞电压	V _{TRHYS}	R _{PROG} = 1.2k	60	80	100	mV
VCC欠压闭锁门限电压	V _{UV}	V _{CC} 从低到高	3.5	3.7	3.9	V
VCC欠压闭锁迟滞电压	V _{UVHYS}		150	200	300	mV
	V _{ASD}	V _{CC} 从低到高	60	100	140	mV
VCC-VBAT闭锁门限电压		V _{cc} 从高到低	5	30	50	mV
电池反接保护电压	V_{REV}	V _{BAT} 从高到低, V _{BAT} -V _{GND}		-70		mV
电池反接保护迟滞电压	V _{REVHYS}	V _{BAT} 从低到高, V _{BAT} -V _{GND}		-30		mV
C/40/4 上中次门四	I _{TERM}	R _{PROG} = 2.4k	50	60	70	mA
C/10终止电流门限		R _{PROG} = 1.2k	110	120	130	mA
PROG引脚电压	V_{PROG}	R _{PROG} = 1.2k, 电流模式	0.9	1.0	1.1	V
CHRG引脚输出低电压	V _{CHRG}	I _{CHRG} = 5mA		0.3	0.6	V
STDBY引脚输出低电压	V _{CHRG}	I _{STDBY} = 5mA		0.3	0.6	V
再充电电池门限电压	ΔV_{RECHRG}	V _{FLOAT} - V _{RECHRG}	100	150	200	mV
限定温度模式中的结温	T _{LIM}			145		°C
功率FET导通电阻	R _{on}			300		mΩ
软启动时间	t _{SS}	I _{BAT} = 0 to I _{BAT} =1000V/R _{PROG}		20		μs
再充电比较器滤波时间	t _{RECHARGE}	V _{BAT} 高至低	0.8	1.8	4.0	ms
终止比较器滤波时间	t _{TERM}	I _{BAT} 降至 I _{CHG} /10	0.8	1.8	4.0	ms
PROG引脚上拉电流	I _{PROG}			1.0		μΑ
TEMP 引脚高端翻转电压	V_{TEMP-H}			80	82	%V _{CC}
TEMP 引脚低端翻转电压	V_{TEMP-L}		43	45		%V _{cc}
EN 引脚输入高电平阈值	V _{ENH}		1.2			V
EN 引脚输入低电平阈值	V _{ENL}				0.6	V

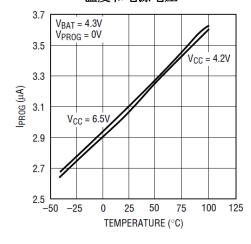
功能框图

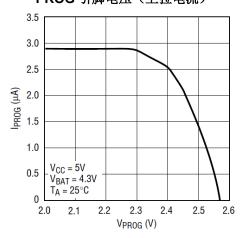

Ver1.0 5 Copyright @ 2009-2016

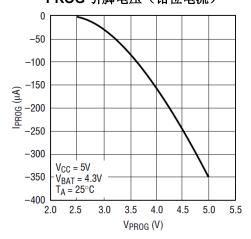

典型特性曲线

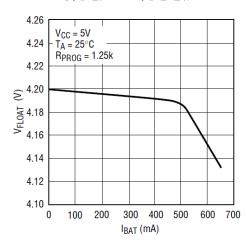
VIN = 5.0V, TA = 25°C, 除非特殊说明。

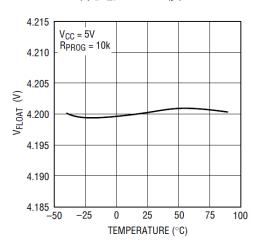

PROG 引脚电压 vs 电源电压 (恒流模式)

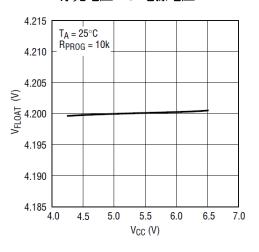

PROG 引脚电压 vs 温度


充电电流 vs PROG 引脚电压

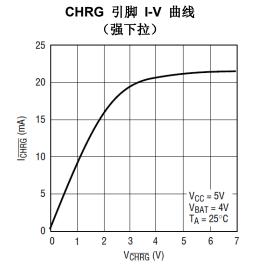

PROG 引脚上拉电流 vs 温度和电源电压

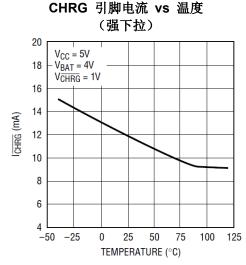

PROG 引脚上拉电流 vs PROG 引脚电压(上拉电流)

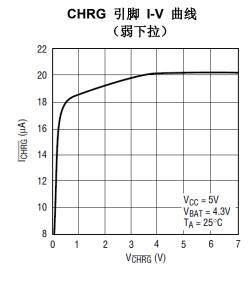

PROG 引脚电流 vs PROG 引脚电压(钳位电流)

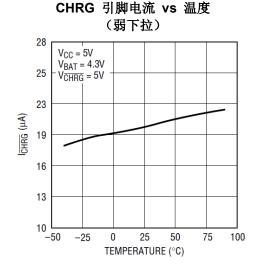

浮充电压 vs 充电电流

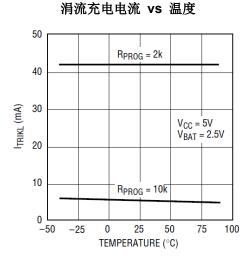
浮充电压 vs 温度

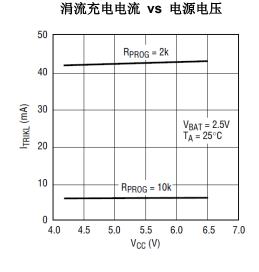

浮充电压 vs 电源电压

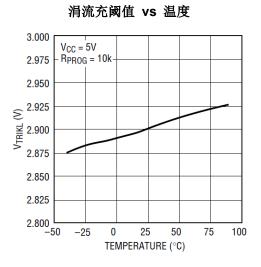


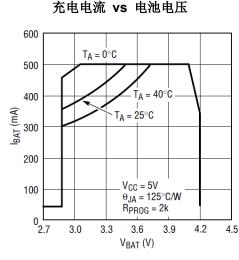


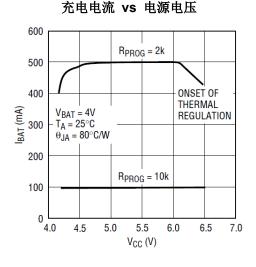

典型特性曲线

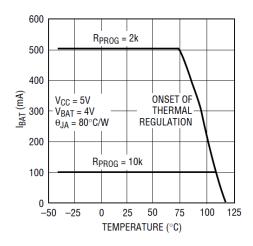

VIN = 5.0V, TA = 25°C, 除非特殊说明。

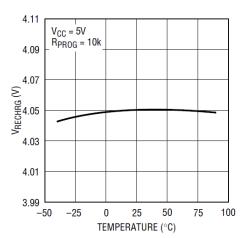




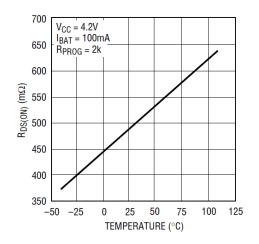







典型特性曲线

V_{IN} = 5.0V, T_A = 25°C, 除非特殊说明。


充电电流 vs 环境温度

再充电电压阈值 vs 温度

功率 MOS 开态电阻 vs 温度

功能描述

YX4056B是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。它能够提供高达1A的充电电流(借助一个热设计良好的PCB布局)和±1%精度的浮充电压。YX4056B集成了一个内部P沟道功率MOSFET及热调节电路,无需隔离二极管或外部电流检测电阻。因此,基本充电器电路仅需两个外部元件。不仅如此,YX4056B还可以接USB电源工作。

正常充电循环

当VCC引脚电压升至UVLO门限电平以上且在PROG引脚与地之间连接了一个精度为1%的设定电阻或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT引脚电平低于2.9V,则充电器进入涓流充电模式。在该模式中,YX4056B提供约1/10的设定充电电流,以便将电池电压提升到一个安全的电平,从而实现满电流充电。

当BAT引脚电压升至2.9V以上时,充电器进入恒流模式,此时向电池提供恒定的充电电流。当BAT引脚电压达到最终浮充电压(4.2V)时,YX4056B进入恒压充电模式,且充电电流开始减小。当充电电流降至设定值的1/10,充电循环结束。

充电电流设定

充电电流是采用一个连接在PROG引脚与地之间的电阻来设定的。电池充电电流是PROG引脚输出电流的1200倍。设定电阻和充电电流采用下列公式来计算:

$$R_{PROG} = \frac{1200}{I_{CHG}}$$
 , $\vec{R}_{CHG} = \frac{1200}{R_{PROG}}$

从BAT引脚输出的充电电流可通过监视PROG引脚电压随时确定,公式如下:

$$I_{BAT} = \frac{V_{PROG} \bullet 1200}{R_{PROG}}$$

充电终止

当充电电流在达到最终浮充电压后降至设定值的1/10时,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的。当PROG引脚电压降至100mV以下的时间超过trerm(一般为1.8ms)时,充电被终止。充电电流被关断,YX4056B进入待机模式,此时输入电源电流降至55µA。(注:C/10终止在涓流充电和热限制模式中失效)。

充电时,BAT引脚上的瞬变负载会使PROG引脚电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下。终止比较器上的1.8ms滤波时间(trem)确保这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的1/10以下,YX4056B即终止充电循环并停止通过BAT引脚提供任何电流。在这种状态下,BAT引脚上的所有负载都必须由电池来供电。

在待机模式中,YX4056B对BAT引脚电压进行连续监控。如果该引脚电压降到4.05V的再充电电压门限(VRECHRG)以下,则另一个充电循环开始并再次向电池供应电流。当在待机模式中进行充电循环的手动再启动时,必须先断开输入电压然后再重新接入输入电压,或者通过控制PROG引脚来关断充电器然后再启动。图2示出了一个典型充电循环的状态图。

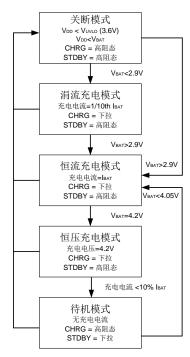


图2 典型充电循环的状态图

充电状态指示

YX4056B集成两个开漏输出的状态指示引脚CHRG和STDBY。当YX4056B处于充电状态时,CHRG输出下拉,其它状态CHRG输出高阻态。充电完成时,STDBY输出下拉。当电池温度异常时,CHRG和STDBY都输出高阻态。

将TEMP引脚接地可以关闭电池温度监测功能。如果BAT引脚接一个10µF电容并且电池不连接,绿色LED与红色

June 2016 - REVISED June 2016

LED将以1-4s的周期闪烁。

充电器状态	红色 LED CHRG	绿色 LED STDBY
充电	亮	灭
充电终止	灭	亮
欠压闭锁,电池温度异常或电 池未连接(TEMP引脚使用时)	灭	灭
BAT引脚接10uF电容且电池 未连接(TEMP=GND)	绿色LED与红色LED将以 1-4s的周期闪烁	

电池反接保护

YX4056B内部集成了电池反接保护电路,可有效防止在装配或应用中电池反接导致的芯片损坏。当BAT引脚电压低于GND电压70mV,判断为电池反接,关闭内部充电回路;当BAT引脚电压回升至低于GND电压30mV,判断为电池正常接入,此时如果BAT引脚电压低于涓流充电阈值,则进入涓流充电状态,如果BAT引脚电压大于涓流充电阈值,则进入恒流充电状态。

热限制

如果芯片温度升高到预设值145℃,内部热反馈环路将减小充电电流。该功能可防止YX4056B过热,并允许用户提高给定电路板功率处理能力的上限而没有损坏YX4056B的风险。在保证充电器将在最坏情况下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

欠压闭锁(UVLO)

一个内部欠压闭锁电路对输入电压进行监控,并在VCC 升至欠压闭锁门限以上之前使充电器保持在停机模式。 UVLO电路将使充电器保持在停机模式。如果UVLO比较 器发生跳变,则在VCC升至比电池电压高100mV之前充 电器将不会退出停机模式。

自动再充电

一旦充电循环被终止,YX4056B立即采用一个具有1.8ms滤波时间的比较器来对BAT引脚上的电压进行连续监控。当电池电压降至4.05V(大致对应于电池容量的80%至90%)以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电状态,并免除了进行

周期性充电循环启动的需要。在再充电循环过程中, CHRG引脚输出进入一个强下拉状态。

稳定性考虑

只要电池与充电器的输出端相连,恒定电压模式反馈环路就能够在未采用一个外部电容的情况下保持稳定。在没有接电池时,为了减小纹波电压,建议采用一个输出电容。当采用大数值的低ESR陶瓷电容时,建议增加一个与电容串联的1Ω电阻。如果使用钽电容,则不需要串联电阻。

在恒定电流模式中,位于反馈环路中的是PROG引脚,而不是电池。恒定电流模式的稳定性受PROG引脚阻抗的影响。当PROG引脚上没有附加电容,RPROG选择高达20k时充电器可以稳定。然而PROG节点的额外电容会减小设定电阻的最大容许阻值。PROG引脚上的极点频率应保持在100kHz以上。因此,如果PROG引脚存在一个容性负载,CPROG,则可采用下式来计算RPROG的最大电阻值:

$$R_{_{PROG}} \, \leq \, \frac{1}{2\pi \, \cdot 10^{5} \, \cdot C_{_{PROG}}}$$

用户更感兴趣的是充电电流而不是瞬态电流。例如,如果一个运行在低电流模式的开关电源与电池并联,则从BAT引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,可在PROG引脚上采用一个简单的RC滤波器来测量平均的电池电流(如图3所示)。在PROG引脚和滤波电容之间增设了一个10k的电阻以确保稳定性。

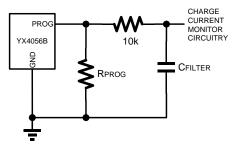


图3 隔离PROG引脚上的容性负载和滤波器

功耗考虑

芯片结温依赖于环境温度、PCB布局、负载和封装类型等多种因素。功耗与芯片结温可根据以下公式计算:

P_D=R_{DS(ON)}×I_{OUT}²

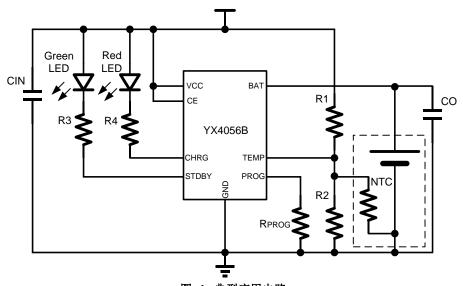
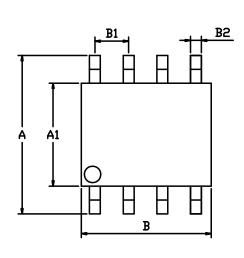
根据PD结温可由以下公式求得:

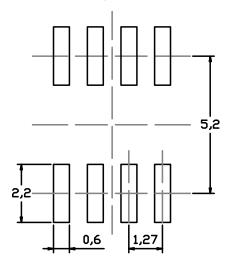
 $T_J=P_D\times\theta_{JA}+T_A$

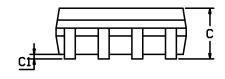
其中

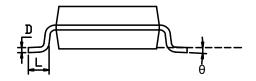
T」是芯片结温, Ta 是环境温度, θJa是封装热阻

典型应用


图 4. 典型应用电路




封装描述

ESOP8 package mechanical drawing

ESOP8 package mechanical data

	dimensions				
symbol	millimeters		inches		
	min	max	min	max	
Α	5.8	6.2	0.2283	0.2441	
A1	3.8	4	0.1496	0.1575	
В	4.8	5	0.1890	0.1969	
B1	1.27		0.0500		
B2	0.31	0.51	0.0122	0.0201	
С		1.75MAX		0.0689MAX	
C1	0.1	0.25	0.0039	0.0098	
L	0.4	1.27	0.0157	0.0500	
D	0.13	0.25	0.0051	0.0098	
θ	0°	8°	0°	8°	

Ver1.0 12 Copyright @ 2009-2016