

P-Channel Enhancement Mode MOSFET

General Description

The CMB100P03B is a P-channel Power MOSFET. They use advanced trench technology to provide excellent R_{DS(ON)}. The device is therefore suitable in advanced high-efficiency switching

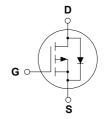
Features

applications.

- Fast switching
- Lower On-resistance
- 100% EAS Guaranteed
- Simple Drive Requirement

Product Summary

BVDSS	RDSON	ID
-30V	7.5mΩ	-100A


Applications

- DC-DC Converters
- Motor control
- LED controller

TO-263 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	-30	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	-100	А	
I _D @T _C =100 ℃	Continuous Drain Current	-59	А	
I _{DM}	Pulsed Drain Current	-400	А	
EAS	Single Pulse Avalanche Energy ¹ 289		mJ	
P _D @Tc=25℃	Total Power Dissipation 90		W	
T _{STG}	Storage Temperature Range -55 to 175		${\mathbb C}$	
T_J	Operating Junction Temperature Range -55 to 175		${\mathbb C}$	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Junction-to-Ambient		62.5	°C/W
$R_{ heta JC}$	Junction-to-Case		1.6	°C/W

CMB100P03B

P-Channel Enhancement Mode MOSFET

Electrical Characteristics (T $_{J}$ =25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
D	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-20A		6.5	7.5	- mΩ
R _{DS(ON)}		V _{GS} =-4.5V, I _D =-20A		10.5	12	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=-250uA$	-1		-2.5	V
1	Drain-Source Leakage Current	V_{DS} =-30V, V_{GS} =0V , T_J =25 $^{\circ}$ C			-1	uA
I _{DSS}		V_{DS} =-30V, V_{GS} =0V , T_J =125 $^{\circ}$ C			-50	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-10V, I _D =-10A		18		S
Qg	Total Gate Charge	\\ - 15\\ \ \ - 500		31		
Q _{gs}	Gate-Source Charge	V_{DS} =-15V, I_{D} =-50A V_{GS} =-4.5V		11		nC
Q_{gd}	Gate-Drain Charge	7 00 110 1		10		
$T_{d(on)}$	Turn-On Delay Time			9		
Tr	Rise Time	V_{DD} =-15V, V_{GS} =-10V, R_{G} =3.3 Ω		10		
T _{d(off)}	Turn-Off Delay Time	I _D =-15A		116		ns
T _f	Fall Time			23		
C _{iss}	Input Capacitance	V _{DS} =-25V, V _{GS} =0V , f=1MHz		3700		
Coss	Output Capacitance			350		pF
C _{rss}	Reverse Transfer Capacitance			300		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current	−−V _G =V _D =0V , Force Current			-100	А
I _{SM}	Pulsed Source Current				-400	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _F =-20A			-1.5	V

Notes

1. The test condition is VDD=-20V,VGS=-10V,L=0.5mH,IAS=-34A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.