N-Channel Enhancement Mode MOSFET #### **Features** - Extremely low threshold voltage - Advanced trench cell design #### **Applications** - · Portable appliances - · High speed switch - Low power DC to DC converter ## Absolute Maximum Ratings (T_a = 25°C unless otherwise specified) | Parameter | Symbol | Value | Unit | |--|------------------|--|--------------| | Drain-Source Voltage | V _{DS} | 60 | V | | Drain-Gate Voltage | V _{GS} | V _{GS} ± 20 | | | Drain Current - Continuous | I _D | 3 | Α | | Peak Drain Current , Pulsed 1) | I _{DM} | 10 | Α | | Total Power Dissipation | P _{tot} | 1.38 ²⁾
0.46 ³⁾ | W | | Operating Junction and Storage Temperature Range | T_{j},T_{stg} | - 55 to + 150 | $^{\circ}$ C | ## **Thermal Characteristics** | Parameter | Symbol | Max. | Unit | |--|---------------|------|------| | Thermal Resistance from Junction to Ambient 2) | $R_{ hetaJA}$ | 90 | °C/W | | Thermal Resistance from Junction to Ambient 3) | $R_{ hetaJA}$ | 270 | °C/W | ¹⁾ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. ²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate ³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout. # **MMFTN2310** ## Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified | Parameter | Symbol | Min. | Тур. | Max. | Unit | |---|------------------------|-------------|-------------|------------------|----------| | STATIC PARAMETERS | | | | | | | Drain-Source Breakdown Voltage
at I _D = 250 μA | $V_{(BR)DSS}$ | 60 | - | - | V | | Drain-Source Leakage Current at V_{DS} = 60 V | I _{DSS} | - | - | 10 | μA | | Gate-Source Leakage Current at $V_{GS} = \pm 20 \text{ V}$ | I _{GSS} | - | - | ± 100 | nA | | Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ | V _{GS(th)} | 1 | - | 2.5 | V | | Drain-Source On-State Resistance
at V_{GS} = 10 V, I_D = 3 A
at V_{GS} = 4.5 V, I_D = 3 A
at V_{GS} = 4 V, I_D = 1 A | R _{DS(on)} | -
-
- | -
-
- | 90
110
100 | mΩ | | DYNAMIC PARAMETERS | | | | | | | Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 3 \text{ A}$ | g _{FS} | - | 6 | - | S | | Input Capacitance at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ | C _{iss} | - | 628 | - | pF | | Output Capacitance
at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ | C _{oss} | - | 29 | - | pF | | Reverse Transfer Capacitance
at V_{DS} = 30 V, V_{GS} = 0 V, f = 1 MHz | C _{rss} | - | 28 | - | pF | | Total Gate Charge
at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 3 A
at V_{GS} = 4.5 V, V_{DS} = 30 V, I_D = 3 A | Q_g | - | 12
5.9 | | nC | | Gate-Source Charge
at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 3 A | Q_{gs} | - | 2.8 | - | nC | | Gate-Drain Charge at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 3 A | Q_{gd} | - | 1.6 | - | nC | | Turn-On Delay Time at V_{DS} = 30 V, I_D = 3 A, V_{GS} = 10 V, R_G = 4.5 Ω | t _{d(on)} | - | 10 | - | ns | | Turn-On Rise Time at V_{DS} = 30 V, I_D = 3 A, V_{GS} = 10 V, R_G = 4.5 Ω | t _r | - | 23 | - | ns | | Turn-Off Delay Time at V_{DS} = 30 V, I_D = 3 A, V_{GS} = 10 V, R_G = 4.5 Ω | $t_{d(off)}$ | - | 34 | - | ns | | Turn-Off Fall Time at V_{DS} = 30 V, I_D = 3 A, V_{GS} = 10 V, R_G = 4.5 Ω | t _f | - | 4.6 | - | ns | | Body-Diode PARAMETERS | | | | | | | Drain-Source Diode Forward Voltage at $V_{GS} = 0 \text{ V}$, $I_S = 3 \text{ A}$ | V _{SD} | | - | 1.3 | V | | Reverse Recovery Time
at I _S = 3 A, dI/dt = 100 A/µs | t _{rr} | - | 34 | - | ns | | Reverse Recovery Charge
at I _S = 3 A, dI/dt = 100 A/µs | Q _{rr} | _ | 4.6 | - | nC | R_{DS(ON)} - On Resistance (mΩ) ## **Electrical Characteristics Curves** V_{DS} - Drain-Source Voltage (V) ## On Resistance Transfer Characteristics Normalized Threshold Voltage T_j - Junction Temperature (°C) Normalized Threshold Voltage ## **Electrical Characteristics Curves** Is - Source Current (A) V_{GS} - Gate-Source Voltage (V) # **MMFTN2310** ## **Test Circuits** ## **SOT-23** # Package Outline (Dimensions in mm) ## **Recommended Soldering Footprint** **Packing information** | | Tape Width | Pitch | | Reel Size | | B. B. I.B. I.: 0. 47 | | |---------|------------|---------|---------------|-----------|------|---------------------------|--| | Package | (mm) | mm | inch | mm | inch | Per Reel Packing Quantity | | | SOT-23 | 8 | 4 ± 0.1 | 0.157 ± 0.004 | 178 | 7 | 3,000 | | # **Marking information** " M2 " = Part No. " YM " = Date Code Marking " Y " = Year " M " = Month Font type: Arial