

N-Channel Enhancement Mode Field Effect Transistor

General Description

The CMSA5020 uses advanced technology to provide excellent RDS (ON). This device is suitable to be used as the low side FET in SMPS,load switching and general purpose.

Features

- Fast switching speed
- Lower On-resistance
- 100% EAS Guaranteed
- Simple Drive Requirement

Product Summary

BVDSS	RDSON	ID
200V	65mΩ	25A

Applications

- Load Switch
- Power Management in Notebook Computer, Portable
 Equipment and Battery Powered Systems.

DFN-8 5x6 Pin Configuration

Туре	Package	Marking
CMSA5020	DFN-8 5*6	CMSA5020

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage 200		V	
V_{GS}	Gate-Source Voltage ±30		V	
I _D @T _C =25℃	Continuous Drain Current 25		Α	
I _{DM}	Pulsed Drain Current	75	А	
EAS	Single Pulse Avalanche Energy ¹	680	mJ	
P _D @T _C =25°C	Total Power Dissipation	90	W	
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$ C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
$R_{ heta JA}$	Junction-to-Ambient (t ≤ 10S)		23	°C/W	
R _{eJC}	Junction-to-Case (Steady State)		1.5	°C/W	

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics ($T_J=25^{\circ}$ C), unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	200			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =15A		60	65	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2.5		4.5	V
I _{DSS}	Drain-Source Leakage Current	V_{DS} =200V, V_{GS} =0V , T_J =25 $^{\circ}$ C			1	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =15A		19		S
R_g	Gate Resistance	V _{DS} =10V, V _{GS} =0V, f=1MHz		3.3		Ω
Qg	Total Gate Charge	V =100V L =5 0A		35		
Q _{gs}	Gate-Source Charge	V_{DD} = 100V , I_{D} = 5.9A V_{GS} =6V		15		nC
Q_gd	Gate-Drain Charge			16		
T _{d(on)}	Turn-On Delay Time			15		
Tr	Rise Time	V_{DD} =100V , R_{G} =1 Ω , R_{L} =20.8 Ω		11		
T _{d(off)}	Turn-Off Delay Time	I _D =4.8A , V _{GEN} =10V		26		ns
T _f	Fall Time			9		
Ciss	Input Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		2800		
C _{oss}	Output Capacitance			200		pF
C _{rss}	Reverse Transfer Capacitance			105		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V . Force Current			25	Α
I _{SM}	Pulsed Source Current	VG-VD-UV , FOICE Cullent			75	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _F =28A			1.2	V

Note:

1. The test condition is VDD=50V, VGS=10V, L=5mH, IAS=16.5A

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.