

General Description

This N-Channel MOSFET has been produced using advanced Power Trench technology to deliver low RDS(on) and optimized BVDSS capability to offer superior performance benefit in the application.

Features

- 60A,40V.RDS(ON)=14Ω@VGS=10V
- Fast Switching
- N-channel-Enhancement mode
- 100% Avalanche Tested


Product Summary

BVDSS	RDSON	ID
40V	14mΩ	60A

Applications

- Power Supplies
- DC-DC & DC-AC Converters
- Inverter

TO-220 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	40	V
V_{GS}	Gate-Source Voltage	± 20	V
$I_D @ T_C = 25^\circ C$	Continuous Drain Current ¹	60	A
I_{DM}	Pulsed Drain Current ²	180	A
EAS	Single Pulse Avalanche Energy ³	300	mJ
$P_D @ T_C = 25^\circ C$	Total Power Dissipation	63	W
T_{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Rating	Unit
$R_{\theta JA}$	Thermal Resistance Junction-ambient	50	°C/W
$R_{\theta JC}$	Thermal Resistance Junction-case	2	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_D=250\text{uA}$	40	---	---	V
$\text{R}_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$\text{V}_{\text{GS}}=10\text{V}$, $\text{I}_D=28\text{A}$	---	---	14	$\text{m}\Omega$
		$\text{V}_{\text{GS}}=4.5\text{V}$, $\text{I}_D=25\text{A}$	---	---	17	
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	$\text{V}_{\text{GS}}=\text{V}_{\text{DS}}$, $\text{I}_D=250\text{uA}$	1	---	2.5	V
I_{DSS}	Drain-Source Leakage Current	$\text{V}_{\text{DS}}=40\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$	---	---	1	uA
I_{GSS}	Gate-Source Leakage Current	$\text{V}_{\text{GS}}=\pm 20\text{V}$, $\text{V}_{\text{DS}}=0\text{V}$	---	---	± 100	nA
g_{fs}	Forward Transconductance	$\text{V}_{\text{DS}}=5\text{V}$, $\text{I}_D=28\text{A}$	---	18	---	S
R_g	Gate Resistance	$\text{V}_{\text{DS}}=0\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	6	---	Ω
Q_g	Total Gate Charge	$\text{I}_D=30\text{A}$ $\text{V}_{\text{DS}}=15\text{V}$ $\text{V}_{\text{GS}}=10\text{V}$	---	32	---	nC
Q_{gs}	Gate-Source Charge		---	3.5	---	
Q_{gd}	Gate-Drain Charge		---	7.5	---	
$\text{T}_{\text{d(on)}}$	Turn-On Delay Time	$\text{V}_{\text{DD}}=15\text{V}$ $\text{I}_D=30\text{A}$ $\text{R}_{\text{GEN}}=6\Omega$ $\text{V}_{\text{GS}}=10\text{V}$	---	20	---	ns
T_r	Rise Time		---	21	---	
$\text{T}_{\text{d(off)}}$	Turn-Off Delay Time		---	45	---	
T_f	Fall Time		---	15	---	
C_{iss}	Input Capacitance	$\text{V}_{\text{DS}}=20\text{V}$, $\text{V}_{\text{GS}}=0\text{V}$, $f=1\text{MHz}$	---	1500	---	pF
C_{oss}	Output Capacitance		---	280	---	
C_{rss}	Reverse Transfer Capacitance		---	150	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_s	Continuous Source Current	$\text{V}_G=\text{V}_D=0\text{V}$, Force Current	---	---	60	A
I_{SM}	Pulsed Source Current		---	---	180	A
V_{SD}	Diode Forward Voltage	$\text{V}_{\text{GS}}=0\text{V}$, $\text{I}_s=28\text{A}$, $T_J=25^\circ\text{C}$	---	---	1.5	V

Notes:

1. Surface Mounted on FR4 Board, $t < 10\text{sec}$.
2. Pulse Test: Pulse Width $< 300\text{us}$, Duty Cycle $< 2\%$.
3. Starting $T_J = 25^\circ\text{C}$, $L = 4\text{mH}$, $\text{IAS} = 12.5\text{A}$, $\text{VDD} = 20\text{V}$, $\text{VGS} = 10\text{V}$.

This product has been designed and qualified for the consumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserves the right to improve product design, functions and reliability without notice.