

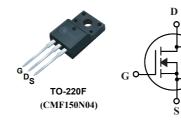
#### **40V N-Channel MOSFET**

### **General Description**

The 150N04 is N-Channel MOSFET, It has specifically been designed to minimize input capacitance and gate charge. The device is therefore suitable in advanced high-efficiency switching applications.

## Features

- Low On-Resistance
- 100% avalanche tested
- RoHS Compliant


### **Product Summary**

| BVDSS | RDSON         | ID   |
|-------|---------------|------|
| 40V   | $3.5 m\Omega$ | 120A |

### **Applications**

- Motor Control
- DC-DC converters
- Switching applications

#### **TO-220F Pin Configuration**



### **Absolute Maximum Ratings**

| Symbol                               | Parameter                                  | Rating     | Units         |
|--------------------------------------|--------------------------------------------|------------|---------------|
| $V_{DS}$                             | Drain-Source Voltage                       | 40         | V             |
| $V_{GS}$                             | Gate-Source Voltage                        | ±20        | V             |
| I <sub>D</sub> @T <sub>C</sub> =25℃  | Continuous Drain Current                   | 120        | Α             |
| I <sub>D</sub> @T <sub>C</sub> =100℃ | Continuous Drain Current                   | 95         | А             |
| I <sub>DM</sub>                      | Pulsed Drain Current                       | 360        | А             |
| EAS                                  | Single Pulse Avalanche Energy <sup>1</sup> | 460        | mJ            |
| P <sub>D</sub> @T <sub>C</sub> =25℃  | Total Power Dissipation                    | 41         | W             |
| T <sub>STG</sub>                     | Storage Temperature Range -55 to 175       |            | $^{\circ}$    |
| TJ                                   | Operating Junction Temperature Range       | -55 to 175 | ${\mathbb C}$ |

### **Thermal Data**

| Symbol           | Parameter                                         | Тур. | Max. | Unit |
|------------------|---------------------------------------------------|------|------|------|
| $R_{\theta JA}$  | Thermal Resistance Junction-ambient(Steady-State) |      | 65   | °C/W |
| R <sub>eJC</sub> | Thermal Resistance Junction-case(Steady-State)    |      | 3.6  | °C/W |



### **40V N-Channel MOSFET**

# Electrical Characteristics (T $_{J}$ =25 $^{\circ}$ C , unless otherwise noted)

| Symbol              | Parameter                            | Conditions                                  | Min. | Тур. | Max. | Unit  |
|---------------------|--------------------------------------|---------------------------------------------|------|------|------|-------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage       | V <sub>GS</sub> =0V , I <sub>D</sub> =250uA | 40   |      |      | V     |
| R <sub>DS(ON)</sub> | Static Drain-Source On-Resistance    | $V_{GS}$ =10V , $I_D$ =20A                  |      | 3    | 3.5  | mΩ    |
| 20(014)             | Otatic Dialif-Outice Off-I/esistance | $V_{GS}$ =4.5V , $I_D$ =20A                 |      | 4.7  | 5.5  | 11122 |
| $V_{GS(th)}$        | Gate Threshold Voltage               | $V_{GS}=V_{DS}$ , $I_D=250uA$               | 1    |      | 3    | V     |
| I <sub>DSS</sub>    | Drain-Source Leakage Current         | $V_{DS}$ =40 V, $V_{GS}$ =0V                |      |      | 1    | uA    |
| I <sub>GSS</sub>    | Gate-Source Leakage Current          | $V_{GS} = \pm 20V$ , $V_{DS} = 0V$          |      |      | ±100 | nA    |
| gfs                 | Forward Transconductance             | $V_{DS}$ =10 $V$ , $I_{D}$ =20 $A$          |      | 25   |      | S     |
| $R_g$               | Gate Resistance                      | $V_{DS}$ =0V , $V_{GS}$ =0V , f=1MHz        |      | 2    |      | Ω     |
| $Q_g$               | Total Gate Charge                    | I <sub>D</sub> =120A                        |      | 76   |      |       |
| $Q_{gs}$            | Gate-Source Charge                   | V <sub>DD</sub> =20V                        |      | 24   |      | nC    |
| $Q_{gd}$            | Gate-Drain Charge                    | V <sub>GS</sub> = 10V                       |      | 18   |      |       |
| T <sub>d(on)</sub>  | Turn-On Delay Time                   | V <sub>DD</sub> =20V                        |      | 20   |      |       |
| Tr                  | Rise Time                            | R <sub>GEN</sub> =4.7Ω                      |      | 181  |      | ns    |
| $T_{d(off)}$        | Turn-Off Delay Time                  | I <sub>D</sub> =60A                         |      | 91   |      | 115   |
| T <sub>f</sub>      | Fall Time                            | V <sub>GS</sub> =10V                        |      | 66   |      |       |
| C <sub>iss</sub>    | Input Capacitance                    |                                             |      | 6700 |      |       |
| C <sub>oss</sub>    | Output Capacitance                   | $V_{DS}$ =25V , $V_{GS}$ =0V , f=1MHz       |      | 600  |      | pF    |
| C <sub>rss</sub>    | Reverse Transfer Capacitance         |                                             |      | 120  |      |       |

### **Diode Characteristics**

| Symbol          | Parameter                 | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------|---------------------------|-----------------------------------------------------------------|------|------|------|------|
| Is              | Continuous Source Current | −V <sub>G</sub> =V <sub>D</sub> =0V , Force Current             |      |      | 120  | Α    |
| I <sub>SM</sub> | Pulsed Source Current     |                                                                 |      |      | 360  | Α    |
| V <sub>SD</sub> | Diode Forward Voltage     | V <sub>GS</sub> =0V , I <sub>S</sub> =20A , T <sub>J</sub> =25℃ |      |      | 1.2  | V    |

#### Notes:

1.The EAS data shows Max. rating .The test condition is Vps=20V , Vgs=10V , L=0.5mH , Ias=43A.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability without notice.