General Description

The LTA8373 is a low power, 48 V wide supply voltage, low noise, rail-to-rail output operational amplifiers capable of operating on supplies ranging from +4.5 V (± 2.25 V) to +48 V (± 2.4 V). This new generation of high-voltage CMOS operational amplifiers, in conjunction with the LTA829x, LTA828x and LTA826x, provide a family of bandwidth, noise, and power options to meet the needs of a wide variety of applications. The LTA8373 offer outstanding dc precision and ac performance, including low offset (± 2.5 mV maximum), low offset drift ($\pm 2~\mu$ V/°C typically), 4 MHz bandwidth, and 15 nV/ \forall Hz input voltage noise density at 1 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current (± 45 mA), high capacitive load drive of up to 1 nF, and high slew rate (2.7 V/ μ s) make the LTA8373 high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA8373 provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA8373 is optimized for operation at voltages from +4.5 V (± 2.25 V) to +48 V (± 2.4 V) over the extended temperature range of -40 °C to +125 °C.

Features and Benefits

■ Wide Supply: ±2.25 V to ±24 V, 4.5 V to 48 V

■ Low Offset Voltage: ±2.5 mV Maximum

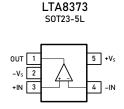
Low Offset Voltage Drift: ±2 μV/°C

■ High Common-Mode Rejection: 110 dB

Gain Bandwidth: 4 MHz

Slew Rate: 2.7 V/μs

Low Noise: 12 nV/√Hz at 10 kHz


Low Bias Current: ±10 pA

Rail-to-Rail Output

Applications

- Tracking Amplifier in Power Modules
- Merchant Power Supplies
- High-Side and Low-Side Current Sensing
- High Precision Comparator
- Battery-Powered Instruments
- Test and Measurement Equipment
- Multiplexed Data-Acquisition Systems
- Programmable Logic Controllers

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V_{S-} to V_{S+} – 1.5V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4.5V to 48V. Split supplies are possible as long as the voltage between $\rm V_{S+}$ and $\rm V_{S-}$ is from 4.5V to 48V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4.5V to 48V.
OUT	Amplifier output.

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8373XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	H71

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V _{S+} to V _{S−}	60 V
Signal Input Terminals: Voltage, Current	–V $_{S}$ – 0.3 V to +V $_{S}$ + 0.3 V, ± 10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 °C

ESD Rating

Parameter	Item	Value	Unit
Electrostatic	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	$\pm 2\ 000$	V
Discharge Voltage	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	±2 000	V

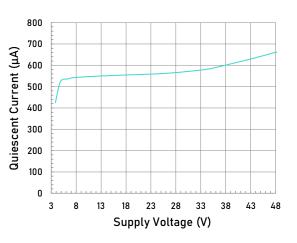
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

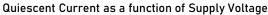
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

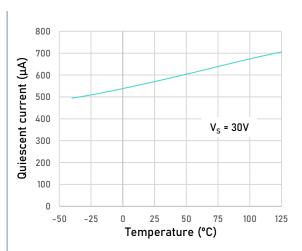
Electrical Characteristics

 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

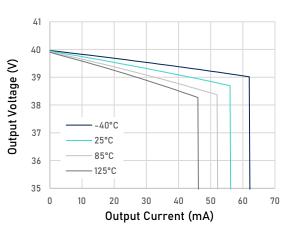
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
OFFSET V	OLTAGE			'		'		
V _{os}	Input offset voltage			±0.5	±2.5	mV		
V _{os} TC	Offset voltage drift	T _A = -40 to +125 °C		±2		μV/°C		
DCDD	Power supply rejection	V _S = 4.5 to 48 V, V _{CM} = 0.1 V		5				
PSRR	ratio	T _A = -40 to +125 °C		10		— μV/V		
INPUT BIA	AS CURRENT							
				10				
I _B	Input bias current	T _A = +85 °C		150		pА		
		T _A = +125 °C		600		-		
I _{os}	Input offset current			5		pА		
NOISE								
V _n	Input voltage noise	f = 0.1 to 10 Hz		4.6		μV _{P-P}		
	Input voltage noise	f = 1 kHz		15		V///11		
e _n	density	f = 10 kHz		12		– nV/√Hz		
I _n	Input current noise density	f = 1 kHz		5		fA/√Hz		
INPUT VO	LTAGE							
V _{CM}	Common-mode voltage range		-V _s		+V _S -1.5	٧		
		V _S = 40 V, V _{CM} = 0 to 38 V		110				
	Common-mode rejection ratio	V_{CM} = 0.1 to 38 V, T_A = -40 to +125 °C		100		- dB		
CMRR		V _S = 5.0 V, V _{CM} = 0 to 3 V		93				
		V_{CM} = 0.1 to 3 V, T_A = -40 to +125 °C		82				
INPUT IMI	PEDANCE							
_		Differential		2.0		_		
C _{IN}	Input capacitance	Common mode		3.5		pF		
OPEN-LO	OP GAIN							
		V _S = 40 V, V ₀ = 0.1 to 39.9 V		126				
		T _A = -40 to +125 °C		118				
A _{VOL}	Open-loop voltage gain	$V_S = 5 \text{ V}, V_0 = 0.1 \text{ to } 4.9 \text{ V}$		116		dB		
		T _A = -40 to +125 °C		108		_		
FREQUEN	ICY RESPONSE							
GBW	Gain bandwidth product			4		MHz		
SR	Slew rate	V _S = 40 V, G = +1, 10 V step		2.7		V/µs		
THD+N	Total harmonic distortion + noise	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0003		%		
	6 1111 11	To 0.1%, V _S = 40 V, G = +1, 5 V step		3.6		μs		
t _S	Settling time	To 0.01%, V _S = 40 V, G = +1, 5 V step		7				

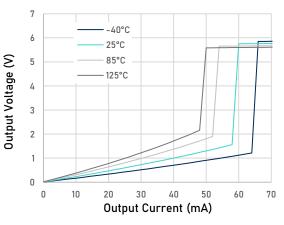

Electrical Characteristics (continued)

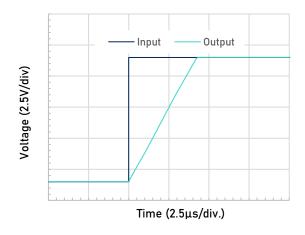

 V_S = 4 V to 48 V, T_A = +25 °C, V_{CM} = V_{OUT} = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

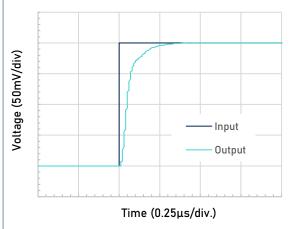

	_			_			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OUTPUT							
V	High output voltage	V_S = ± 20 V, R_L = 10 k Ω		+V _S -95		\/	
V _{OH}	swing	$V_S = \pm 20 \text{ V, } R_L = 2 \text{ k}\Omega$		– mV			
.,	Low output voltage	V_S = ±20 V, R_L = 10 k Ω		-V _S +60		>/	
V _{OL}	swing	$V_S = \pm 20 \text{ V, } R_L = 2 \text{ k}\Omega$	-V _s +245			– mV	
I _{sc}	Short-circuit current			±45		mA	
POWER S	UPPLY						
V _s	Operating supply voltage	T _A = -40 to +125 °C	4.5		48	٧	
•	Quiescent current (per amplifier)	V _S = 5 V		535			
lα		V _S = 40 V		620		– μΑ	
THERMAL	. CHARACTERISTICS						
T _A	Operating temperature range		-40		+125	°C	
		SOT23-5L		190			
θ_{JA}	Deales of Theory					_	
	Package Thermal Resistance					°C/W	
						_	

Typical Performance Characteristics


At T $_{A}$ = +25 °C, V $_{CM}$ = V $_{S}$ /2, and R $_{L}$ = 10 k Ω connected to V $_{S}$ /2, unless otherwise noted.

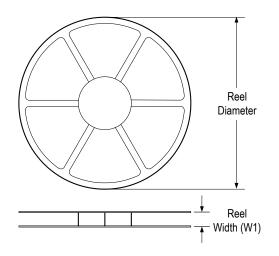



Quiescent Current as a function of Temperature

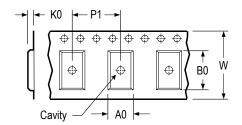

Output Voltage Swing as a function of Output Current (Sourcing, $V_S = 40 \text{ V}$)

Output Voltage Swing as a function of Output Current (Sinking, $V_S = 40 \text{ V}$)

Large-Signal Step Response(Failing)

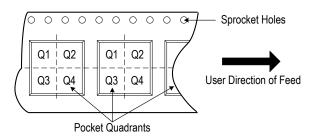


Small-Signal Step Response



Tape and Reel Information

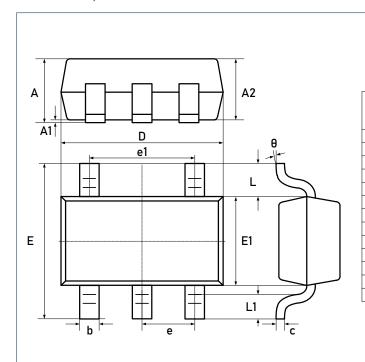
REEL DIMENSIONS



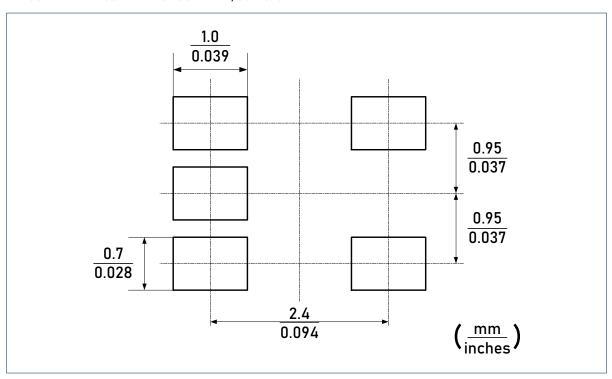
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE


* All dimensions are nominal

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8373XT5/R6	SOT23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3


Package Outlines

DIMENSIONS, SOT23-5L

	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.047		
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
E	2.60	3.00	0.102	0.118	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075 BSC		
L	0.60	REF	0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0° 8° 0°			8°	

RECOMMENDED SOLDERING FOOTPRINT, S0T23-5L

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

