

150V N-Channel MOSFET

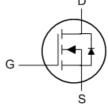
General Description

These N-Channel enhancement mode power field effect transistors uses advanced trench Technology, which provides low on-state resistance, high switching performance and excellent quality. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, DC-AC converters for uninterrupted power supplies and motor controls.

Features

- 100% avalanche tested
- Fast Switching
- Improved dv/dt capability

Product Summary


BVDSS	RDSON ID	
150V	110mΩ	20A

Applications

- Switch mode power supplies (SMPS)
- PWM Motor Controls
- DC-DC converters

TO-263 Pin Configuration

7	Γ	2	62
	V)	-2	กง

Туре	Package	Marking
CMB20N15	TO-263	CMB20N15

Absolute Maximum Ratings

Symbol Parameter		Rating	Units	
V_{DS}	Drain-Source Voltage	150	V	
V _{GS}	Gate-Source Voltage ±20		V	
I _D @T _C =25°C	Continuous Drain Current	20	А	
I _D @T _C =100°C	Continuous Drain Current	14	А	
I _{DM}	Pulsed Drain Current	60	А	
EAS	Single Pulse Avalanche Energy ¹	150	mJ	
P _D @T _C =25°C	Total Power Dissipation	80	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
T_J	Operating Junction Temperature Range	-55 to 150	°C	

^{*} Drain current limited by maximum junction temperature.

Thermal Data

Symbol	Parameter	Rating	Unit	
$R_{ hetaJA}$	Thermal Resistance Junction-ambient	62	°C/W	
R _{θJC}	Thermal Resistance Junction-case	2.2	°C/W	

150V N-Channel MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	150			٧
D	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A			110	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =10A			115	11177
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1		3	\
	Drain Sauras Laskaga Current	V _{DS} =120V, V _{GS} =0V, T _J =25℃			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =120V , V _{GS} =0V , T _J =125 °C			100	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =15V , I _D =10A		15		S
Qg	Total Gate Charge	I _D =18A		9		
Q _{gs}	Gate-Source Charge	V _{DS} =75V		4		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =10V		1.5		
$T_{d(on)}$	Turn-On Delay Time	V _{DS} =75V		9		
Tr	Rise Time	V _{GS} = 10V		7		ns
$T_{d(off)}$	Turn-Off Delay Time	R _L =7.5Ω R _{GEN} =3Ω		15		115
T _f	Fall Time	TVGEN=012		3		
C _{iss}	Input Capacitance			1500		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		60		pF
C _{rss}	Reverse Transfer Capacitance			3.5		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			20	Α
I _{SM}	Pulsed Source Current				60	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =19A , T _J =25 °C			1.2	V

Note:

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.

^{1.}The EAS data shows Max. rating . The test condition is V_{DD} =50V,V $_{GS}$ =10V,L=10mH,I $_{AS}$ =5.4 A