智能外控集成 LED 光源

主要特点

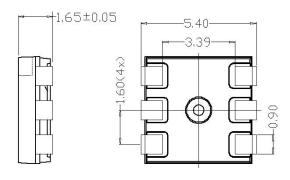
- 所有元件集成在5050封装中,不需要任何其他外围元件构成一个完整的外控像素点。
- 智能反接保护,5V电源接反时不会损坏元器件。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 每个像素点的四基色颜色可实现256级亮度显示。
- 端口扫描频率2KHz。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 断点续传,额外增加一路信号线,实现双路信号传输,在单个像素点损坏的情况下,不影响整体显示效果
- 任意两点传输距离在不超过5米时无需增加任何电路。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 光的颜色高度一致,性价比高。

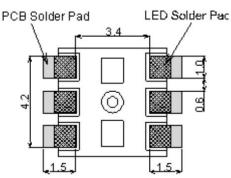
主要应用领域

- LED全彩发光字灯串,LED全彩软灯条硬灯条,LED护栏管。
- LED点光源, LED像素屏, LED异形屏。

产品概述

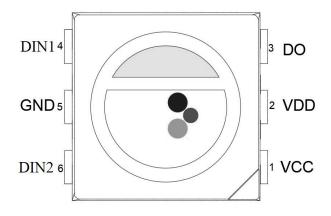
WS2813B-RGBW是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,防反接电路,还包含有高精度的内部振荡器和高精度恒流控制模块,有效保证了像素点光的颜色高度一致。


实现双路信号传输,在单个像素点损坏的情况下,不影响整体色彩的显示。


数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN1端接受从控制器传输过来的数据,首先送过来的32bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少32bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。

高达 **2KHz** 的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。 **280us**以上的 **RESET** 时间,出现中断也不会引起误复位,可以支持更低频率、价格便宜的MCU。

机械尺寸(单位mm)



智能外控集成 LED 光源

引出端排列

引脚功能

序号	符号	管脚名	功 能 描 述
1	VCC	IC 供电电源	PCB LAYOUT 时与 VDD 直接连接在一起或串电阻连在一起
2	VDD	电源	LED 芯片供电脚,接 +5V 电源
3	DO	数据输出	控制数据信号输出脚
4	DIN1	数据1输入	控制数据信号 1 输入脚
5	GND	地线	信号接地和电源接地脚
6	DIN2	数据 2 输入	控制数据信号 2 输入脚

最大额定值(如无特殊说明, T_A=25℃, V_{SS}=0V)

参数	符号	范围	单位
电源电压	V_{DD}	+3.7~+5.3	V
逻辑输入电压	V _I	-0.7∼VDD+0.7	V
工作温度	Topt	-25~+ 8 5	°C
储存温度	Tstg	-40~+105	°C

电气参数(如无特殊说明,T_A=25℃,V_{DD}=5V,V_{SS}=0V**)**

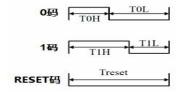
参数	符号	最小	典型	最大	单位	测试条件
输入电流	$I_{\rm I}$			±1	μA	$V_I = V_{DD}/V_{SS}$
高电平输入	$V_{ m IH}$	$0.7V_{DD}$		VDD+0.7	V	$D_{ m IN}$
低电平输入	$V_{\rm IL}$	-0.7V		$0.3~\mathrm{V_{DD}}$	V	$\mathrm{D_{IN}}$
滞后电压	V_{H}		0.35		V	D_{IN}

智能外控集成 LED 光源

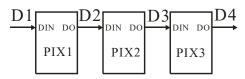
开关特性(如无特殊说明, T_A=25℃, V_{DD}=5V, V_{SS}=0V**)**

参数	参数 符号			最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF, DIN→DOUT, RL=10KΩ
下降时间	t_{THZ}			120	μs	CL=300pF, OUTR/OUTG/OUTB
输入电容	CI			15	pF	

LED 特性参数

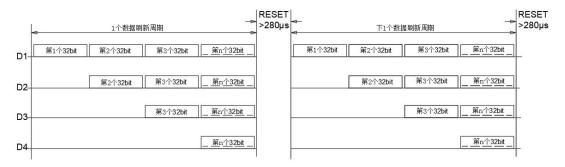

参数	符号	颜色		静态电流	工作电流				
多奴	11) 5	颜色 	最小值 典型值 最大值 单位		(测试条件DC=5V)				
		Red	300	/	500		15 A		
发光	IV	Green	800	/	1500				
强度	1 V	Blue	200	/	400	mcd	15mA		
		W	1500	/	2500				
		Red	620	/	630				
波长	λd	Green	515	/	525	nm	15mA		
		Blue	465	/	475				
		正白	6000	-	8000	K			
色温	Тс	自然白	4000	-	5000	K	15mA		
		暖白	3000	-	3500	K			

数据传输时间


ТОН	0码, 高电平时间	220ns~380ns
T1H	1码, 高电平时间	580ns~1μs
T0L	0码, 低电平时间	580ns~1μs
T1L	1码, 低电平时间	580ns~1μs
RES	帧单位,低电平时间	280µs 以上

时序波形图

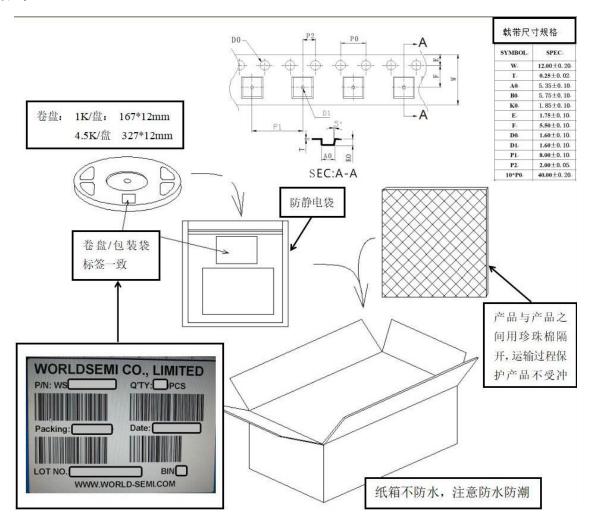
输入码型:



连接方法:

智能外控集成 LED 光源

数据传输方法


注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

32bit 数据结构

_																																
	G7	G6	G5	G4	G3	G2	Gl	G0	R7	R6	R5	R4	R3	R2	RI	R0	В7	В6	В5	B4	В3	B2	В1	В0	W7	W6	W5	W4	W3	W2	W1	W0
L																																

注: 高位先发,按照 GRBW 的顺序发送数据。

包装标准:

智能外控集成 LED 光源

表面贴装型 LED 使用注意事项

1. 描述:

通常 LED 也像其它的电子元件一样有着相同的使用方法,为了让客户更好地使用华彩威的 LED 产品,请参看下面的 LED 保护预防措施。

2. 注意事项:

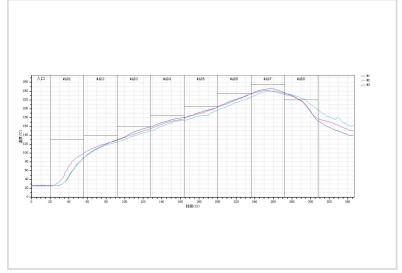
2.1. 灰尘与清洁

LED 的表面是采用改性环氧胶封装的,环氧胶对于 LED 的光学系统和抗老化性能都起到很好的保护作用。环氧胶易粘灰尘,保持作业环境的洁净。当 LED 表面有一定限度内的尘埃,也不会影响到发光亮度,但我们仍应避免尘埃落到 LED 表面。打开包装袋的就优先使用,安装过 LED 的组件应存放在干净的容器中,在 LED 表面需要清洁时,如果使用三氨乙烯或者丙酮等溶液会出现使 LED 表面溶解等现象,不可使用具用溶解性的溶液清洁 LED,可使用一此异丙基的溶液,在使用任何清洁溶液之前都应确认是否会对 LED 有溶解作用;请不要用超声波的方法清洁 LED,如果产品必须使用超声波,那么就要评估影响 LED 的一些参数,如超声波功率,烘烤的时间和装配的条件等,在清洁之前必须试运行,确认是否会影响到 LED。

2.2. 防潮处理

LED 属于湿敏元件,将 LED 包装在铝膜的袋中是为了避免 LED 在运输和储存时吸收湿气,在包装袋中放有干燥剂,以吸收湿气。如果 LED 吸收了水气,那么在 LED 过回流焊时,水气就会蒸发而膨胀,有可能使胶体与支架脱离以及损害 LED 的光学系统。由于这个原因,防湿包装是为了使包装袋内避免有湿气,但通常保护时间仅能维持 1~2 个月。此款产品防潮等级 (MSL)为: 5a. SMT 时请参照 IPC/JEDECJ-STD-020 规定的材料防潮等级 (MSL) 定义进行 MSL 管控。

防潮等级	包装拆封后车间寿命						
	时间	条件					
LEVEL1	无限制	≤30°C/85%RH					
LEVEL2	1年	≤30°C/60%RH					
LEVEL2a	4 周	≤30°C/60%RH					
LEVEL3	168 小时	≤30°C/60%RH					
LEVEL4	72 小时	≤30°C160%RH					
LEVEL5	48 小时	≤30°C/60%RH					
LEVEL5a	24 小时	≤30°C/60%RH					
LEVEL6	取出即用	≤30°C/60%RH					


智能外控集成 LED 光源

- 2.3 SMT 贴片要求:
- 2.3.1 建议 LED 在 SMT 前拆袋,整卷放入烤箱中进行除湿干燥 $(70\sim75$ ℃烘烤 \geq 24H);
- 2.3.2 产品从烤箱中取出至高温焊接完成(包含多次回流焊、浸锡、波峰焊、加热维修等高温操作/作业),时间段控制在 24 内(在 T<30℃, RH<60%条件下);
 - 2.3.3 LED 贴件在印刷锡膏后的 PCBA 上,应尽快完成 SMT,建议不超过 1H;
- 2.3.4 生产剩余、机台抛料、维修用料等散料 LED,若长时间暴露在空气中,不可直接使用,建议进行除湿干燥后再被使用。整卷烘烤: 70~75℃* ≧24H 或 散料烘烤: 120℃*4H。

3. 焊接

表贴应用 LED 应符合 JEDECJ-STD-020C 标准,作为一般指导原则,建议遵循所用焊锡膏制造商推荐的焊接温度曲线,或使用我司如下推荐的焊接温度曲线。

温度曲线描述	范围
30℃~150℃预热斜率	1~4 ℃/s
30℃~150℃预热时间	60∼120 s
150℃~200℃恒温斜率	0~3 ℃/s
150℃~200℃恒温时间	60∼120 s
液相温度	217℃
峰值温度	245℃
回流焊斜率	0~3 ℃/s
回流焊时间	45-90 s
降温速率	-4~0 ℃/s
室温至峰值温度停留时间	<6 min

注:以上所有温度是指在封装本体焊点表面测得的温度。

4. 产品配装过程注意事项

1. 通过使用适当的工具从材料侧面夹取	2. 不可直接用手或尖锐 金属压胶体表面,它可能 会损坏内部电路	3. 不可将模组材料堆积在一起,它可能会损坏内部电路	4. 不可用在 PH<7 的酸性场所
			CPM7

智能外控集成 LED 光源

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20181016	沈金国	尹华平
V1.1	M	增加色温范围及修改贴片说明	20191009	沈金国	尹华平
V1.2	M	修改产品描述	20200522	沈金国	尹华平
V1.3	M	修改产品描述	20210401	董乐	尹华平
V1.4	M	内容修订更新	20211105	余行辉	尹华平

注:初始版本号V1.0;每次修订批准后,版本号顺序加"0.1"; 状态包括:N--新建,A--增加,M--修改,D--删除。