

Test Procedure for the NCP103MXTCGEVB Evaluation Board

There is a collection test procedures for NCP103 demoboards. This paper offers some helpful test configuration for first contact with ONSEMI NCP103 LDO.

1. QUIESCENT CURRENT

Figure 1: Test configuration for measurement I_{Q} , Quiescent Current

- 1. Connect circuit as shown figure on 1
- 2. Apply voltage at V_{Input.} Default test V_{input} is V_{out_nom}+1 V or 2.5 V whichever is greater
- 3. Value shown µA meter is measured quiescent current.
- 4. Measurement is finished. Disconnect supply voltage.

*Note – Be carefully if any device is connected on output, because leakage current can affect measurement accuracy.

ON Semiconductor®

2. LOAD REGULATION

Figure 2: Test configuration for measurement REG_{LOAD}, Load Regulation

- 1. Connect circuit as shown figure on 2
- 2. Apply voltage at V_{Input.} Default test V_{input} is V_{out_nom}+1 V or 2.5 V whichever is greater
- 3. Set minimal required current I_1 , e.g. 1 mA, and switch load ON.
- 4. Note the value V1 from voltmeter Vo.
- 5. Switch load OFF and set maximal required current I2, e.g. 150 mA and switch load ON.
- 6. Note the value V2 from voltmeter Vo.
- 7. Load regulation is obtained via following formula: $REG_{LOAD}=(V_1-V_2)$, [V]
- 8. Measurement is finished. Disconnect supply voltage.

ON Semiconductor®

3. LINE REGULATION

Figure 3: Test configuration for measurement REG_{LINE}, Line Regulation

- 1. Connect circuit as shown on figure 3
- 2. Set load to the required current e.g. 10 mA
- 3. Set minimal input voltage V_{11} , V_{OUT_NOM} +1V or 2.5V whichever is greater
- 4. Note the value V_{11} and V_{01} .
- 5. Set maximal input voltage $V_{12} = 5.5 V$
- 6. Note the value V_{12} and V_{02} .
- 7. Load regulation is obtained via following formula: REG_{LINE}=(V₀₁-V₀₂)/(V₁₁-V₁₂), [V/V]
- 8. Measurement is finished. Disconnect supply voltage.

4. ENABLE START-UP

Figure 4: Test configuration for measurement enables response

- 1. Connect circuit as shown on figure 4
- 2. Set generator to SQUARE PULSE, $0.9 \le AMPLITUDE \le V_{IN}$, FREQUENCY=10Hz, DUTY=10%
- 3. Apply voltage at $V_{Input.}$ Default test V_{input} is V_{out_nom} +1 V or 2.5 V whichever is greater
- 4. Set required IOUT, e.g. 10 mA
- 5. Connect oscilloscope to EN signal and $V_{OUTPUT.}$
- 6. Watch enable response of the regulator after asserting EN pin.
- 7. Measurement is finished. Disconnect supply voltage.