

FDD5612

60V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{DS(ON)}$ specifications. The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 18 A, 60 V. $R_{DS(ON)} = 55 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 64 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Optimized for use in high frequency DC/DC converters.
- Low gade charge.
- Very fast switching.

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		±20	V
ID	Drain Current – Continuous	(Note 1)	18	A
		(Note 1a)	5.4	
	Drain Current – Pulsed		100	
P _D	Maximum Power Dissipation	(Note 1)	42	W
		(Note 1a)	3.8	
		(Note 1b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range	-55 to +175	°C

Incina					
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	3.5	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W	
		(Note 1b)	96		

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD5612	FDD5612	13"	16mm	2500 units

©2001 Fairchild Semiconductor Corporation

March 2015

FDD5612

Avalanche EnergyBBBBIARMaximum Drain-Source Avalanche Current5.4AOff Characteristics BV_{DSS} Drain-Source Breakdown Voltage $V_{GS} = 0 \ V$, $I_D = 250 \ \mu A$ 60V ΔBV_{DSS} ΔT_J Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A$, Referenced to 25° C62mV/°IbssZero Gate Voltage Drain Current $V_{DS} = 48 \ V$, $V_{GS} = 0 \ V$ 1 μA IcssrGate-Body Leakage, Forward $V_{GS} = 20 \ V$, $V_{DS} = 0 \ V$ 100nAIGSSRGate-Body Leakage, Reverse $V_{GS} = -20 \ V \ V_{DS} = 0 \ V$ -100nAOn Characteristics ΔT_J (Note 2) $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$, Referenced to 25° C-6mV/° $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 12.43V $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu A$, Referenced to 25° C-6mV/°	N_{DSS} Single Pulse Drain-Source Avalanche Energy AR $V_{DD} = 30 \text{ V}, I_D = 5.4 \text{ A}$ ARMaximum Drain-Source Avalanche Current $V_{DD} = 30 \text{ V}, I_D = 5.4 \text{ A}$ Off CharacteristicsBV_DSSDrain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 250 \mu \text{ A}$ BV_DSSDrain-Source Breakdown Voltage Temperature Coefficient $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Breakdown Voltage Drain Current $V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$ BSS Zero Gate Voltage Drain Current $V_{DS} = 48 \text{ V}, V_{DS} = 0 \text{ V}$ $GSSF$ Gate-Body Leakage, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $GSSR$ Gate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $M_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = $	2.4 -6 36 42	1 100 -100 3	V mV/°C μA nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N_{DSS} Single Pulse Drain-Source Avalanche Energy AR $V_{DD} = 30 \text{ V}, I_D = 5.4 \text{ A}$ ARMaximum Drain-Source Avalanche Current $V_{DD} = 30 \text{ V}, I_D = 5.4 \text{ A}$ Off CharacteristicsBV_DSSDrain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 250 \mu \text{ A}$ BV_DSSDrain-Source Breakdown Voltage Temperature Coefficient $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Breakdown Voltage Drain Current $V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$ BSS Zero Gate Voltage Drain Current $V_{DS} = 48 \text{ V}, V_{DS} = 0 \text{ V}$ $GSSF$ Gate-Body Leakage, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $GSSR$ Gate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $M_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 250 \mu \text{ A}, \text{ Referenced to } 25^{\circ}\text{ C}$ ΔT_J Gate Threshold Voltage $I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, I_D = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = 5.4 \text{ A}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}, \text{ D} = $	2.4 -6 36 42	1 100 -100 3	A MV/°C μA nA NA
$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ARMaximum Drain-Source Avalanche CurrentVGSIOff CharacteristicsBVDSSDrain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}$, $I_D = 250 \ \mu\text{A}$ 60 $\underline{BV_{DSS}}$ Drain-Source Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 60 \underline{DSS} Zero Gate Voltage Drain Current $V_{DS} = 48 \ V$, $V_{GS} = 0 \ V$ 60GSSFGate-Body Leakage, Forward $V_{GS} = 20 \ V$, $V_{DS} = 0 \ V$ 60GSSRGate-Body Leakage, Reverse $V_{GS} = -20 \ V$, $V_{DS} = 0 \ V$ 70On Characteristics(Note 2) $V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C ΔT_J Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 1 $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 1 $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 1 ΔT_J Temperature Coefficient $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 1 ΔT_J Gate Threshold Voltage $I_D = 5.4 \ A$ $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ 20 D_{FS} Forward Transconductance $V_{DS} = 5 \ V$, $I_D = 5.4 \ A$ 20 D_{FS} Input Capacitance $V_{DS} = 30 \ V$, $V_{GS} = 0 \ V$,20 C_{FS} Input Capacitance $V_{DS} = 30 \ V$, $V_{GS} = 0 \ V$,	2.4 -6 36 42	1 100 -100 3	V mV/°C μA nA NA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$3V_{DSS}$ Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}$, $I_D = 250 \mu \text{A}$ 60 ΔBV_{DSS} Breakdown Voltage Temperature Coefficient $I_D = 250 \mu \text{A}$, Referenced to 25°C 60 ΔT_J Coefficient $V_{DS} = 48 \text{ V}$, $V_{GS} = 0 \text{ V}$ 60 SSF Gate-Body Leakage, Forward $V_{GS} = 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $GSSF$ Gate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $On Characteristics$ (Note 2) $V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu \text{A}$ 1 ΔT_J Gate Threshold Voltage $V_{DS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ 1 $\Delta V_{GS(th)}$ Static Drain-Source $V_{GS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ 1 D_{GN} On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 $D_{(n)}$ On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 30 \text{ V}$, $V_{CS} = 0 \text{ V}$,20 $D_{(n)}$ Input Capacitance $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,0 $D_{(n)}$ Opticapacitance $V_{DS} = 30 \text{ V}$, $V_{CS} = 0 \text{ V}$,0	2.4 -6 36 42	1 100 -100	mV/°C μA nA nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$3V_{DSS}$ Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}$, $I_D = 250 \mu \text{A}$ 60 ΔBV_{DSS} Breakdown Voltage Temperature Coefficient $I_D = 250 \mu \text{A}$, Referenced to 25°C 60 ΔT_J Coefficient $V_{DS} = 48 \text{ V}$, $V_{GS} = 0 \text{ V}$ 60 SSF Gate-Body Leakage, Forward $V_{GS} = 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $GSSF$ Gate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $On Characteristics$ (Note 2) $V_{GS} = -20 \text{ V}$, $V_{DS} = 0 \text{ V}$ 60 $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu \text{A}$ 1 ΔT_J Gate Threshold Voltage $V_{DS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ 1 $\Delta V_{GS(th)}$ Static Drain-Source $V_{GS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ 1 D_{GN} On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 $D_{(n)}$ On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $D_{(n)}$ On-State Drain Current $V_{DS} = 30 \text{ V}$, $V_{CS} = 0 \text{ V}$,20 $D_{(n)}$ Input Capacitance $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,0 $D_{(n)}$ Opticapacitance $V_{DS} = 30 \text{ V}$, $V_{CS} = 0 \text{ V}$,0	2.4 -6 36 42	1 100 -100	mV/°C μA nA nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LBVDSS ΔT_J Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu\text{A}$, Referenced to 25°C DSSZero Gate Voltage Drain Current $V_{DS} = 48 \ V$, $V_{GS} = 0 \ V$ GSSFGate–Body Leakage, Forward $V_{GS} = 20 \ V$, $V_{DS} = 0 \ V$ GSSRGate–Body Leakage, Reverse $V_{GS} = -20 \ V$, $V_{DS} = 0 \ V$ On Characteristics(Note 2) $V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C ΔT_J Temperature Coefficient $I_D = 250 \ \mu\text{A}$, Referenced to 25°C ΔT_J Static Drain–Source $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ $On-Resistance$ $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$, $T_J = 125^{\circ}\text{C}$ $D(on)$ On–State Drain Current $V_{GS} = 10 \ V$, $V_{DS} = 5 \ V$ $D(on)$ On–State Drain Current $V_{DS} = 5 \ V$, $I_D = 5.4 \ A$ $Optimic$ Characteristics D_{ISS} Input Capacitance $V_{DS} = 30 \ V$, $V_{GS} = 0 \ V$,	2.4 -6 36 42	1 100 -100	μA nA nA
$\begin{array}{c c c c c c c } \hline l_{DSS} & Zero Gate Voltage Drain Current & V_{DS} = 48 V, & V_{GS} = 0 V & 1 & 1 & \muA \\ \hline l_{GSSF} & Gate-Body Leakage, Forward & V_{GS} = 20 V, & V_{DS} = 0 V & 100 & nA \\ \hline l_{GSSR} & Gate-Body Leakage, Reverse & V_{GS} = -20 V & V_{DS} = 0 V & -100 & nA \\ \hline On Characteristics & (Note 2) & & & & & & & & & & & & & & & & & & $	DSSZero Gate Voltage Drain Current $V_{DS} = 48 \text{ V}$, $V_{GS} = 0 \text{ V}$ GSSFGate-Body Leakage, Forward $V_{GS} = 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ GSSRGate-Body Leakage, Reverse $V_{GS} = -20 \text{ V}$ $V_{DS} = 0 \text{ V}$ On Characteristics(Note 2) $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu \text{A}$ 1 $\underline{AV_{GS(th)}}$ Gate Threshold Voltage $I_D = 250 \mu \text{A}$, Referenced to 25°C1 $\underline{AT_J}$ Temperature Coefficient $V_{GS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ $V_{GS} = 6 \text{ V}$, $I_D = 5.4 \text{ A}$ $R_{DS(on)}$ Static Drain-Source $V_{GS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $D(on)$ On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 D_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ 20 $Dynamic Characteristics$ $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,20 C_{ISS} Input Capacitance $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,	-6 36 42	100 -100 3	nA nA V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GSSRGate-Body Leakage, Reverse $V_{GS} = -20 \ V \ V_{DS} = 0 \ V$ On Characteristics (Note 2)(Note 2) $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \ \mu\text{A}$ 1 $V_{GS(th)}$ Gate Threshold Voltage $I_D = 250 \ \mu\text{A}$, Referenced to 25°C 1 ΔT_J Temperature Coefficient $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ 1 $R_{DS(on)}$ Static Drain-Source $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ $V_{GS} = 6 \ V$, $I_D = 5.4 \ A$ $D_{(on)}$ On-State Drain Current $V_{GS} = 10 \ V$, $V_{DS} = 5 \ V$ 20 P_{FS} Forward Transconductance $V_{DS} = 5 \ V$, $I_D = 5.4 \ A$ Dynamic Characteristics $V_{DS} = 30 \ V$, $V_{GS} = 0 \ V$,	-6 36 42	-100	nA V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On Characteristics (Solution (Note 2))(Note 2) $V_{GS(th)}$ Gate Threshold Voltage ΔT_J $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 1 $\frac{V_{GS(th)}}{\Delta T_J}$ Gate Threshold Voltage Temperature Coefficient $I_D = 250 \ \mu A$, Referenced to 25° C1 $R_{DS(on)}$ Static Drain–Source On–Resistance $V_{GS} = 10 \ V$, $I_D = 5.4 \ A$ $V_{GS} = 6 \ V$, $I_D = 5.4 \ A$, $T_J = 125^{\circ}$ C20 $D_{(on)}$ On–State Drain Current $V_{GS} = 10 \ V$, $V_{DS} = 5 \ V$ 20 $D_{(on)}$ On–State Drain Current $V_{GS} = 10 \ V$, $V_{DS} = 5 \ V$ 20 D_{FS} Forward Transconductance $V_{DS} = 5 \ V$, $I_D = 5.4 \ A$ 20 D_{TS} Input Capacitance $V_{DS} = 5 \ V$, $I_D = 5.4 \ A$ 20 D_{TS} Input Capacitance $V_{DS} = 30 \ V$, $V_{GS} = 0 \ V$,20	-6 36 42	3	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c } \hline & Gate Threshold Voltage & V_{DS} = V_{GS}, & I_D = 250 \ \mu\text{A} & 1 \\ \hline & \underline{V_{GS(th)}} & Gate Threshold Voltage & I_D = 250 \ \mu\text{A}, Referenced to 25^{\circ}\text{C} \\ \hline & \underline{\Lambda}T_J & Temperature Coefficient & V_{DS} = 10 \ V, & I_D = 5.4 \ A \\ \hline & On-Resistance & V_{GS} = 10 \ V, & I_D = 5.4 \ A \\ \hline & V_{GS} = 10 \ V, & I_D = 5.4 \ A, \ T_J = 125^{\circ}\text{C} \\ \hline & V_{GS} = 10 \ V, & I_D = 5.4 \ A, \ T_J = 125^{\circ}\text{C} \\ \hline & V_{GS} = 10 \ V, & I_D = 5.4 \ A, \ T_J = 125^{\circ}\text{C} \\ \hline & V_{GS} = 10 \ V, & V_{DS} = 5 \ V & 20 \\ \hline & V_{FS} & Forward Transconductance & V_{DS} = 5 \ V, & I_D = 5.4 \ A \\ \hline & Dynamic Characteristics \\ \hline & C_{ISS} & Input Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{GS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{DS} = 30 \ V, & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} \ V \ V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} \ V \ V_{CS} = 0 \ V, \\ \hline & Output Capacitance & V_{CS} \ V \ V_{CS} \ V \ V \ V \ V \ V \ V \ V \ V \ V \ $	-6 36 42		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-6 36 42		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36 42		mV/°C
$ \begin{array}{ c c c c c c c c } \hline On-Resistance & V_{GS} = 6 \ V, & I_D = 5 \ A \\ V_{GS} = 10 \ V, & I_D = 5 \ A \\ V_{GS} = 10 \ V, & I_D = 5 \ A \\ V_{GS} = 10 \ V, & V_{DS} = 5 \ V \\ \hline 20 & A \\ \hline 64 & 103 \\ \hline 75 & 110 \\ 7$	On-Resistance $V_{GS} = 6 \text{ V}$, $I_D = 5 \text{ A}$ $V_{GS} = 10 \text{ V}$, $I_D = 5.4 \text{ A}$, $T_J = 125^{\circ}\text{C}$ $D_{(on)}$ On-State Drain Current $V_{GS} = 10 \text{ V}$, $V_{DS} = 5 \text{ V}$ 20 P_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ Oynamic Characteristics C_{ISS} Input Capacitance $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,	42	55	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$D_{D(on)}$ On-State Drain Current $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ 20 Q_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 5.4 \text{ A}$ Oynamic Characteristics C_{ISS} Input Capacitance $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$		64	mΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}$, $I_D = 5.4 \text{ A}$ Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$,Quarter of the construction of the cons			Α
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{iss} Input Capacitance $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$	15		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{iss} Input Capacitance $V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$			
In the number of the term of	C _{oss} Output Capacitance f = 1.0 MHz	660)	pF
		79		pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{rss} Reverse Transfer Capacitance	36		pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switching Characteristics (Note 2)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	16	ns
t_f Turn-Off Fall Time48ns Q_g Total Gate Charge $V_{DS} = 30 \text{ V}$, $I_D = 5.4 \text{ A}$,7.511nC Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 2.5nC		4	8	ns
	_{d(off)} Turn–Off Delay Time	24	38	ns
Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 2.5nC	f Turn–Off Fall Time	4	8	ns
	Q_g Total Gate Charge $V_{DS} = 30 \text{ V}, I_D = 5.4 \text{ A},$	7.5	11	nC
Qgd Gate-Drain Charge 3 nC	Q_{gs} Gate-Source Charge $V_{GS} = 10 V$	2.5		nC
	Q _{gd} Gate–Drain Charge	3		nC
Drain-Source Diode Characteristics and Maximum Patings	Drain–Source Diode Characteristics and Maximum Ratings			
Diani-Ourise Divue Sharasierishis anu waxiinuni Nalinys				Α
			2.7	
Drain Source Diede Characteristics and Maximum Patings	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 24 4 7.5 2.5	8 38 8 11	

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDD5612

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms	Definition of Terms				
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177