
JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

1A LOW DROPOUT LINEAR REGULATOR

CJT1117B-XXX

FEATURES

- Low Dropout Voltage: 1.15V (Typ.) at 1A Output Current
- Trimmed Current Limit
- On-Chip Thermal Shutdown
- Three-Terminal Adjustable or Fixed 1.25V,1.8V, 2.5V, 3.3V, 5V
- Operation Junction Temperature: -40 to 125°C

GENERAL DESCRIPTION

The CJT1117B-XXX is a series of low dropout three-terminal regulators with a dropout of 1.15V(typ.) at 1A output current.

The CJT1117B-XXX series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandgap. reference to assure output voltage accuracy to be within 1.5%. Current limit is trimmed to ensure specified. output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.

The CJT1117B-XXX has an adjustable version, that can provide the output voltage from 1.25V to 5V with only 2 external resistors.

APPLICATIONS

- PC Motherboard
- LCD Monitor
- Graphic Card
- DVD-Video Player
- NIC/Switch
- Telecom Modem
- ADSL Modem
- Printer and Other Peripheral Equipment

MARKING

CJT1117B = Device code XXX: output voltage

ORDERING INFORMATION

Package	Operating Junction Temperature Range	Part NO.
		CJT1117B-ADJ
		CJT1117B-1.8
SOT-223	-40 to 125℃	CJT1117B-2.5
		CJT1117B-3.3
		CJT1117B-5.0

ABOSLUTE MAXIMUM RATINGS

(T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	20	V
Maximum Junction Temperature	T _{J MAX}	150	℃
Storage Temperature	T _{STG}	-40~+150	℃
Soldering Temperature & Time	T _{solder}	260°C,10s	

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

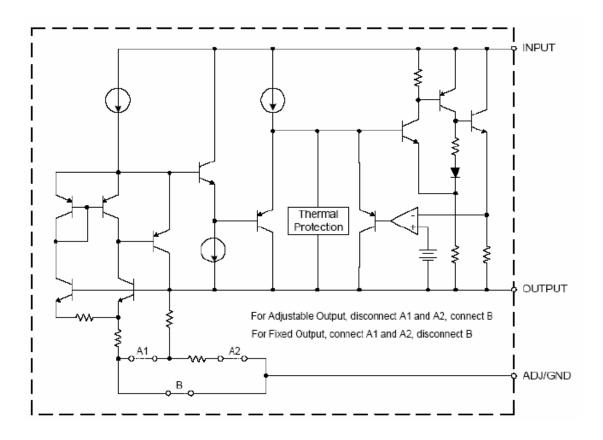
Parameter	Symbol	Value	Unit
Input Voltage	V _{IN}	15	V
Operating Junction Temperature	T_J	-40~+125	°C
Operating Amibient Temperature	T _A	-40~+85	$^{\circ}$

ESD RATINGS

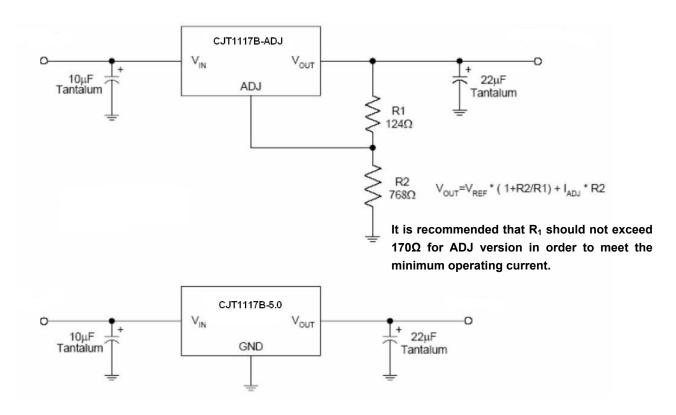
Parameter	Symbol	Value	Unit
Electrostatic discharge	$V_{ESD-HBM}$	2000	V
Licenseitane dicentarge	V_{ESD-MM}	400	v

Note: ESD testing is conducted in accordance with the relevant specifications formulated by the Joint Electronic Equipment Engineering Commission (JEDEC). The human body mode (HBM) electrostatic discharge test is based on the JESD22-114D test standard, using a 100pF capacitor and discharging to each pin of the device through a resistance of $1.5k\Omega$. The electrostatic discharge test in mechanical mode (MM) is based on the JESD22-115-A test standard and uses a 200pF capacitor to discharge directly to each pin of the device.

THERMAL METRIC

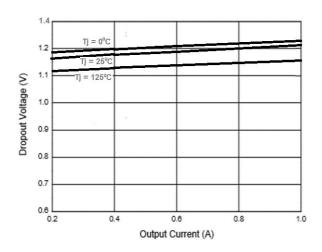

Parameter	Symbol	Value	Unit
Junction-to-ambient thermal resistance	$R_{\Theta JA}$	100	°C/W
Junction-to-case thermal resistance	R _{OJC}	35	°C/W

ELECTRICAL CHARACTERISTICS

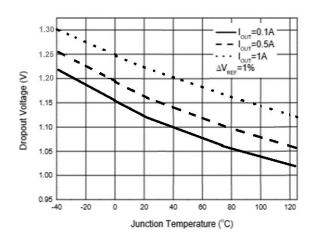

$V_{IN} \le 10V$, $T_J = 25$ °C, unless otherwise specified.

Parameter	Symbol	Part No.	Test Conditions	Min	Тур	Max	Unit	
Defense Veltere		0.1744470 AD I	I _{OUT} =10mA, V _{IN} =3.23V	1.231	1.250	1.269	V	
Reference Voltage	V _{IROC}	CJT1117B-ADJ	10mA≤I _{OUT} ≤1A, 2.75V≤V _{IN} -V _{OUT} ≤13.25V	1.225	1.250	1.275	V	
		CJT1117B-1.8	I _{OUT} =10mA, V _{IN} =3.8V	1.773	1.8	1.827		
		СЛ1111/В-1.0	10mA≤I _{OUT} ≤1A, 3.3V≤V _{IN} ≤12V	1.764	1.8	1.836		
		CJT1117B-2.5	I _{OUT} =10mA, V _{IN} =4.5V	2.463	2.5	2.538		
Output Voltage	Vo	C311117B-2.5	10mA≤I _{OUT} ≤1A, 4V≤V _{IN} ≤12V	2.450	2.5	2.550	V	
Output Voltage	v _o	CJT1117B-3.3	I _{OUT} =10mA, V _{IN} =5.3V	3.251	3.3	3.350	V	
			10mA≤I _{OUT} ≤1A, 4.8V≤V _{IN} ≤12V	3.234	3.3	3.366		
		CJT1117B-5.0	I _{OUT} =10mA, V _{IN} =7.0V	4.925	5.0	5.075		
		C311117B-3.0	10mA≤I _{OUT} ≤1A, 6.5V≤V _{IN} ≤12V	4.9	5.0	5.1		
		CJT1117B-ADJ	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤12V			0.2	%	
		CJT1117B-1.8	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤10.2V			7		
Line Regulation	LNR	CJT1117B-2.5	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤9.5V			7	mV	
		CJT1117B-3.3	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤8.7V			7	IIIV	
		CJT1117B-5.0	I _{OUT} =10mA, 1.5V≤V _{IN} -V _{OUT} ≤7V			10		
		CJT1117B-ADJ				0.4	%	
	LDR	CJT1117B-1.8				7.2	- mV	
Load Regulation		CJT1117B-2.5	V_{IN} - V_{OUT} =1.5V, 10mA \leqslant I _{OUT} \leqslant 1A			10		
		CJT1117B-3.3				13.2		
		CJT1117B-5.0				20		
			Δ V _{REF} =1%, I _{OUT} =100mA		1.10			
Dropout Voltage	V _D		Δ V _{REF} =1%, I _{OUT} =500mA		1.13		V	
			Δ V _{REF} =1%, I _{OUT} =1000mA		1.15	1.30		
Adjust Pin Current	I _{ADJ}		I _{OUT} =10mA (ADJ only)		60	120	μΑ	
Adjust Pin Current Change	ΔI_{ADJ}		1.5V≤V _{IN} -V _{OUT} ≤12V, I _{OUT} =10mA (ADJ only)		1.7	5	μΑ	
Minimum Load Current	IL		V _{IN} = 5V, V _{ADJ} = 0V		2	7	mA	
Quiescent Current	Iq		V _{IN} = V _{OUT} +1.25V (ADJ except)			10	mA	
Current Limit	I _{Limit}		V _{IN} - V _{OUT} = 1.5V	1.20	1.50		Α	
Ripple Rejection	RR		f=120Hz, C_{OUT} =22 μ FTantalum, V_{IN} - V_{OUT} =3 V , I_{OUT} =1A	60	75		dB	
Temperature Stability					0.5		%	
Long-Term Stability			T _A =125°C, 1000hrs		0.3		%	
RMS Output Noise (% of VOUT)			T _A =25℃, 10Hz≤f ≤10kHz		0.003		%	
Thermal Shutdown Temperature	T _{SD}				160		°C	
Thermal Shutdown Hysteresis	ΔT_{SD}				25		°C	

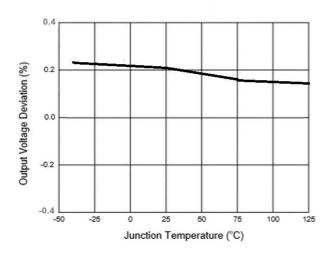
FUNCTIONAL BLOCK DIAGRAM

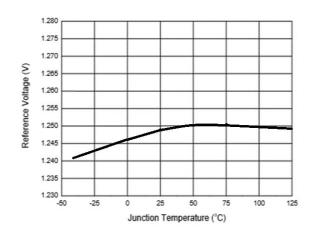


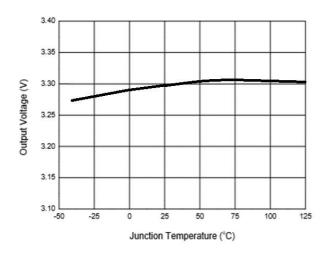
TYPICAL APPLICATION CIRCUIT

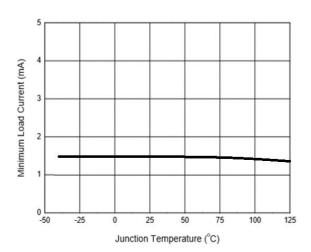


Typical Characteristics


Dropout Voltage vs. Output Current

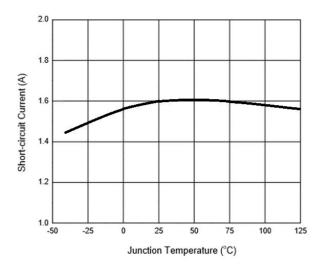

Dropout Voltage vs. Junction Temperature


Load Regulation vs. Junction Temperature

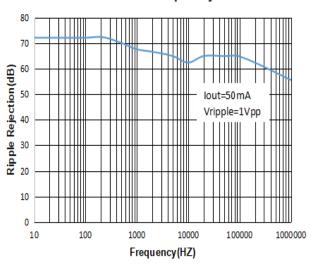

Reference Voltage vs. Junction Temperature

Output Voltage vs. Junction Temperature

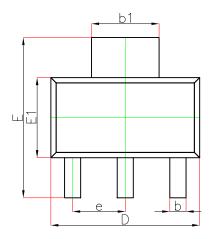
Minimum Load Current vs. Junction Temperature

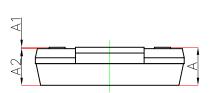


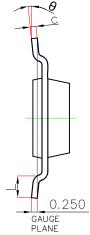
Typical Characteristics


Adjust Pin Current vs. Junction Temperature

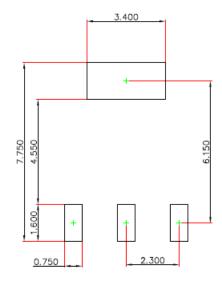
Adjust Pin Current (µA) -20 Junction Temperature (°C)


Short-circuit Current vs. Junction Temperature

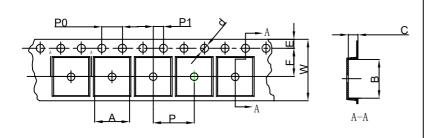



PSRR Vs.Frequency

SOT-223 Package Outline Dimensions



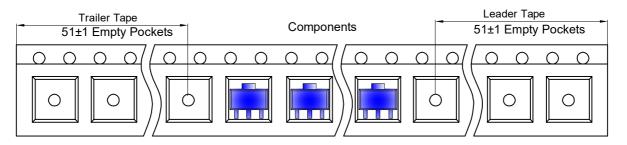
Symbol	Dimensions In	n Millimeters	Dimension	s In Inches
Syllibol	Min.	Max.	Min.	Max.
Α		1.800		0.071
A1	0.020	0.100	0.001	0.004
A2	1.500	1.700	0.059	0.067
b	0.660	0.840	0.026	0.033
b1	2.900	3.100	0.114	0.122
С	0.200	0.350	0.009	0.014
D	6.300	6.700	0.248	0.264
E	6.700	7.300	0.264	0.287
E1	3.300	3.700	0.130	0.146
е	2.300(BSC)	0.091	(BSC)
L	0.750		0.030	
θ	0°	10°	0°	10°

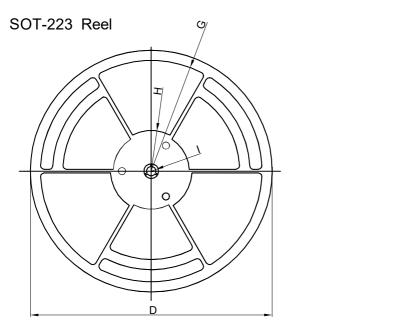

SOT-223 Suggested Pad Layout

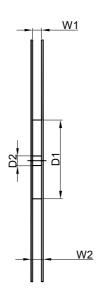
NOTE:

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

SOT-223 Embossed Carrier Tape




Packaging Description:


SOT-223 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13" or 33.0cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

Dimensions are in millimeter										
Pkg type A B C d E					E	F	P0	Р	P1	W
SOT-223	6.765	7.335	1.88	Ø1.50	1.75	5.50	4.00	8.00	2.00	12.00

SOT-223 Tape Leader and Trailer

Dimensions are in millimeter								
Reel Option	D	D1	D2	G	Н	1	W1	W2
13"Dia	Ø330.00	100.00	13.00	R151.00	R56.00	R6.50	12.40	17.60

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
2,500 pcs	13 inch	2,500 pcs	336×336×48	20,000 pcs	445×355×365	

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, automotive electronics, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.