

Test Procedure for the NCV47551DAJGEVB Evaluation Board

- 1. Connect the test setup as is shown in Figure 1. See Table 1 with required equipment.
 - Letter \mathbf{F} Force line
 - Letter **S** Sense line
- 2. Select output current limit by connecting jumper $J_0 J_3$.
 - $\mathbf{J}_{\mathbf{0}} \mathbf{I}_{\text{LIM0}} \sim 100 \ \mu\text{A}$
 - $\mathbf{J}_1 \mathbf{I}_{\text{LIM1}} \sim 10 \text{ mA}$
 - $\mathbf{J}_2 \mathbf{I}_{\text{LIM2}} \sim 20 \text{ mA}$
 - $J_3 I_{LIM3} R_{CSO3}$ position available for individual current limit setting by resistor from range 127.5 Ω to 25.5 k Ω
- 3. Set Input Voltage and turn on Power Supply.
- **4.** Enable chip by connecting external Voltage Source on appropriate EN jumper. Enable voltage must be higher than 2.31 V.
- 5. Set load current (max 20 mA) and turn ON Load.
- 6. Monitor Output voltage, it's given according to Equation 1.

$$V_{out} = 1.265 \left(1 + \frac{R_1}{R_2}\right)$$
 (eq. 1)

7. Monitor CSO voltage on appropriate CSO connector. It should be max 2.55 V in steady state. The CSO voltage is proportional to output current according to Equation 2.

$$V_{cso} = I_{out} \times R_{cso}$$
 (eq. 2)

8. Compare your results with measured results in Table 2.

ON Semiconductor®

Figure 1. Test Setup

Table 1: Required Equipment

Equipment	Ranges
Power Supply	0 V – 45 V / 100 mA
Voltage Source	0 V - 45 V
Load	0 mA – 100 mA
V - meter	0 V - 20 V
A - meter	0 mA – 100 mA

Figure 2. PCB Layout

		Value		
Parameter	Test Conditions	Nominal	Measured	Unit
Output Voltage	V_{in} = 13.5 V, V_{out_nom} = 5.1 V, I_{out} = 0.1 mA, R_{CSO} = Short to ground	5.1	5.11	V
	V_{in} = 13.5 V, $V_{out nom}$ = 5.1 V, I_{out} = 20 mA, R_{CSO} = Short to ground	5.1	5.12	v
Output Current	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.1 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 24.9 \text{ k}\Omega$	0.102	0.11	
	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.1 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 249 \Omega$	10.2	10.6	mA
	$V_{in} = 13.5 \text{ V}, V_{out nom} = 5.1 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 127 \Omega$	20	20.8	
PSRR	I_{out} = 1 mA, R ₁ = 82 kΩ, R ₂ = 27 kΩ, C _{in} = none, C _b = 10 nF, C _{noise} = 10 nF, f = 100 Hz, 0.5 V _{p-p}	80	86.4	dB
	I_{out} = 1 mA, R ₁ = 82 kΩ, R ₂ = 27 kΩ, C _{in} = none, C _b = 10 nF, C _{noise} = 10 nF, f = 1 kHz, 0.5 V _{p-p}	70	89	