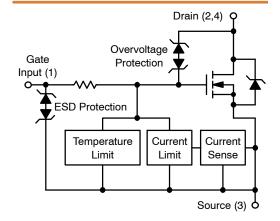
onsemi

42 V, 10 A, Single N-Channel, DPAK

NCV8408, NCV8408B

NCV8408/B is a single channel protected Low–Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain–to–Gate clamping for overvoltage protection. Thermal protection includes a latch which can be reset by toggling the input. This device is suitable for harsh automotive environments.


Features

- Short Circuit Protection
- Thermal Shutdown with Latched Reset
- Gate Input Current Flag During Latched Fault Condition
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

V _{DSS} (Clamped)	R _{DS(on)} TYP	I _D MAX (Limited)
42 V	55 mΩ @ 5 V	10 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8408DTRKG	DPAK (Pb-Free)	2500/Tape & Reel
NCV8408BDTRKG	DPAK (Pb–Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit	
Drain-to-Source Voltage Internally Clamped	V _{DSS}	42	Vdc	
Drain-to-Gate Voltage Internally Clamped $(R_{GS} = 1.0 \text{ M}\Omega)$	V _{DGR}	42	V	
Gate-to-Source Voltage	V _{GS}	±14	Vdc	
Continuous Drain Current	Ι _D	Internally L	imited	
Gate Input Current (V _{GS} = ±14 V _{DC})	I _{GS}	±10	mA	
Source to Drain Current	I _{SD}	4.0	A	
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2)	PD	1.8 2.3	W	
Thermal Resistance Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Tab Steady State (Note 3)	$f R_{ heta JA} \ f_{ heta JA} \ f_{ heta JA} \ f_{ heta JT}$	70 55 2.1	°C/W	
Single Pulse Inductive Load Switching Energy ($V_{DD} = 20$ Vdc, $V_{GS} = 5.0$ V, $I_L = 8.0$ A) Repetitive Pulse Inductive Load Switching Energy ($V_{DD} = 20$ Vdc, $V_{GS} = 5.0$ V, $I_L = 8.0$ A, $T_J = 25^{\circ}$ C) Repetitive Pulse Inductive Load Switching Energy ($V_{DD} = 20$ Vdc, $V_{GS} = 5.0$ V, $I_L = 6.8$ A, $T_J = 105^{\circ}$ C)	E _{AS} E _{AR} E _{AR}	185 128 92	mJ	
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = 2.0 Ω , R _L = 4.5 Ω , t _d = 400 ms, T _J = 25°C)	V _{LD}	63	V	
Operating Junction Temperature	TJ	-40 to 150	°C	
Storage Temperature	T _{stg}	-55 to 150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Surface-mounted onto minimum pad FR4 PCB (1 oz Cu, 0.06" thick).
Surface-mounted onto 2" square FR4 PCB, (1" square, 1 oz Cu, 0.06" thick).
Surface-mounted onto minimum pad FR4 PCB (2 oz Cu, 0.06" thick).

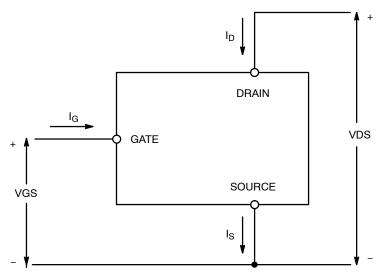


Figure 1. Voltage and Current Convention

Characteristic	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•			•	•
$ Drain-to-Source Clamped Breakdown Voltage (Note 4) \\ (V_{GS} = 0 V, I_D = 10 mA, T_J = 25^{\circ}C) \\ (V_{GS} = 0 V, I_D = 10 mA, T_J = 150^{\circ}C) (Note 6) \\ (V_{GS} = 0 V, I_D = 10 mA, T_J = -40^{\circ}C) (Note 6) \\ $		V _{(BR)DSS}	42 40 43	46 45 47	51 51 51	V
Zero Gate Voltage Drain Current ($V_{GS} = 0 V$, $V_{DS} = 32 V$, $T_J = 25^{\circ}C$) ($V_{GS} = 0 V$, $V_{DS} = 32 V$, $T_J = 150^{\circ}C$) (Note 6)		I _{DSS}		0.6 2.5	5.0 10	μΑ
INPUT CHARACTERISTICS (Note 4)						
Gate Input Current - Normal Operation	(V _{GS} = 5.0 V)	I _{GSSF}	-	25	50	μΑ
Gate Input Current – Protection Latched	(V _{GS} = 5.0 V) (Note 6)	I _{GSSL}	-	440	-	μΑ
Gate Threshold Voltage	$(V_{GS} = V_{DS}, I_D = 1 \text{ mA})$	V _{GS(th)}	1.0	1.7	2.2	V
Gate Threshold Temperature Coefficient		V _{GS(th)} /T _J	-	5.0	-	-mV/°C
Latched Reset Voltage	(Note 6)	V _{LR}	0.8	1.4	1.9	V
Latched Reset Time	(V _{GS} = 5.0 V to V _{GS} < 1 V) (Note 6)	t _{LR}	10	40	100	μs
Internal Gate Input Resistance			-	25.5	-	kΩ
ON CHARACTERISTICS (Note 4)		•				
Static Drain-to-Source On-Resistance ($V_{GS} = 5.0 \text{ V}, I_D = 3.0 \text{ A}, T_J @ 25^{\circ}C$) ($V_{GS} = 5.0 \text{ V}, I_D = 3.0 \text{ A}, T_J @ 150^{\circ}C$) (Note 6)		R _{DS(on)}		55 100	60 120	mΩ
Source-Drain Forward On Voltage	(V _{GS} = 0 V, I _S = 7.0 A)	V _{SD}	-	0.95	-	V
SWITCHING CHARACTERISTICS (Note	6)	I	1	1		
Turn-OFF/ON Slew Rate Matching	$ \begin{array}{l} V_{GS} = 5.0 \; V, V_{DS} = 13 \; V, \; R_L = 4 \; \Omega; \\ T_J = -40^\circ C \\ T_J = 150^\circ C \\ T_J = 150^\circ C \\ T_J = 25^\circ C \\ -40^\circ C < T_J < 150^\circ C \end{array} $	T _{Match}	-15 -15 -5 -20	- - - -	15 15 5 20	%
Turn-ON Delay Time		t _{d(ON)}		10	20	μs
Rise Time (10% I_D to 90% I_D)		t _r		20	40	1
Turn-OFF Delay Time	V _{GS} = 5 V, V _{DS} = 13 V	t _{d(OFF)}		30	60	1
Fall Time (90% I_{D} to 10% $I_{\text{D}})$	$R_L = 4 \Omega$, $-40^{\circ}C < T_J < 150^{\circ}C$	t _f		20	40	
Slew-Rate ON (90% V_D to 10% V_D)		-dV _{DS} /dt _{ON}		0.5		V/μs
Slew-Rate OFF (10% V_D to 90% V_D)	1 1	dV _{DS} /dt _{OFF}		0.5		
SELF PROTECTION CHARACTERISTIC	3 (T _J = 25°C unless otherwise noted) (1	Note 5)				
Current Limit V _{GS} = 5.0 V, V _{DS} = 10 V, T _J @ 25°C		I _{LIM}	10	13	16	A

$ \begin{array}{l} V_{GS} = 5.0 \ \text{V}, \ V_{DS} = 10 \ \text{V}, \ T_J \ @ \ 25^{\circ}\text{C} \\ V_{GS} = 5.0 \ \text{V}, \ V_{DS} = 10 \ \text{V}, \ T_J = 150^{\circ}\text{C} \ (\text{Not} \ V_{GS} = 5.0 \ \text{V}, \ V_{DS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ V_{SS} = 10 \ \text{V}, \ T_J = -40^{\circ}\text{C} \ (\text{Not} \ $		·LIWI	10 10 9	13 - -	16 18 16	
Temperature Limit (Turn-off)	V _{GS} = 5.0 V V _{GS} = 10 V	T _{LIM(off)}	150 150	175 165	200 185	°C

ESD ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	-	V
Electro-Static Discharge Capability	Machine Model (MM)	ESD	400	-	-	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width = 300μ s, Duty Cycle = 2%.

5. Fault conditions are viewed as beyond the normal operating range of the part.

6. Not subject to production testing.

TEST CIRCUITS AND WAVEFORMS

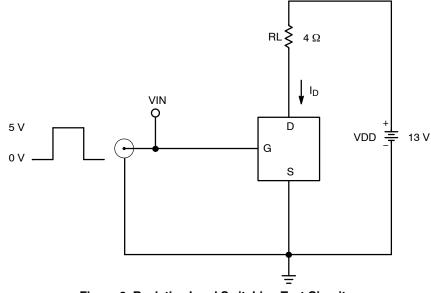


Figure 2. Resistive Load Switching Test Circuit

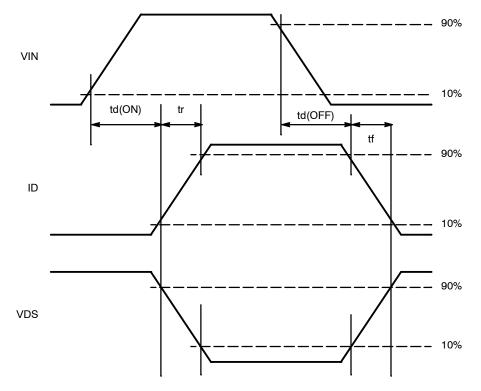


Figure 3. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

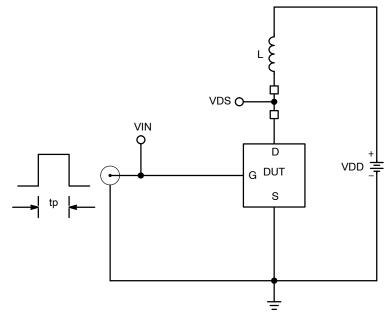
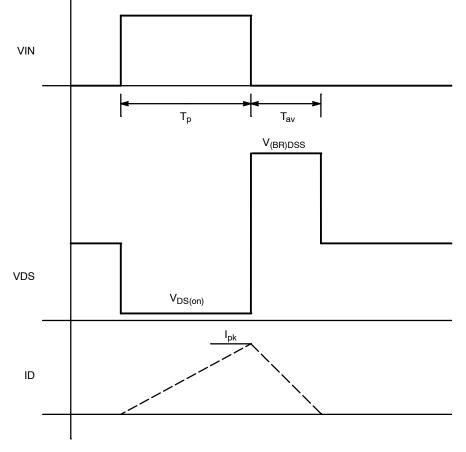
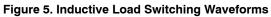
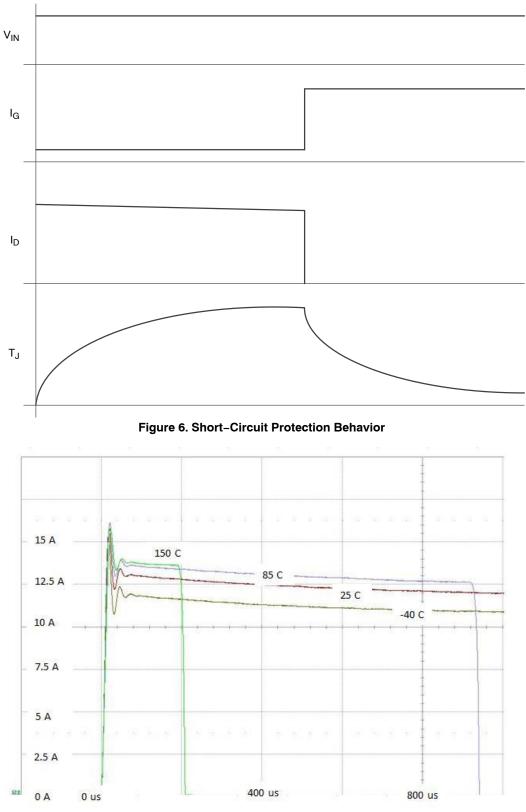
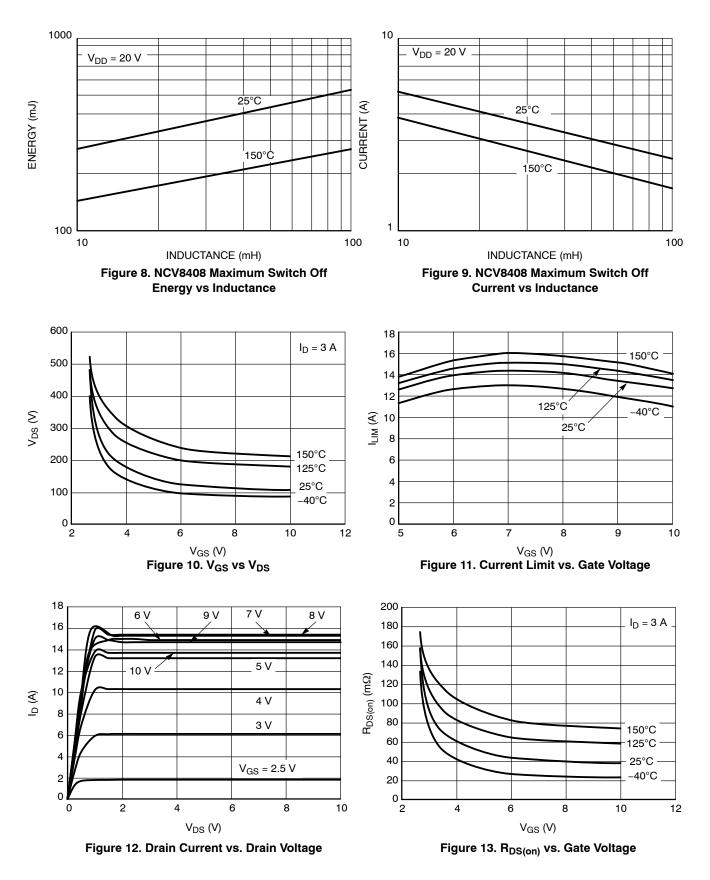
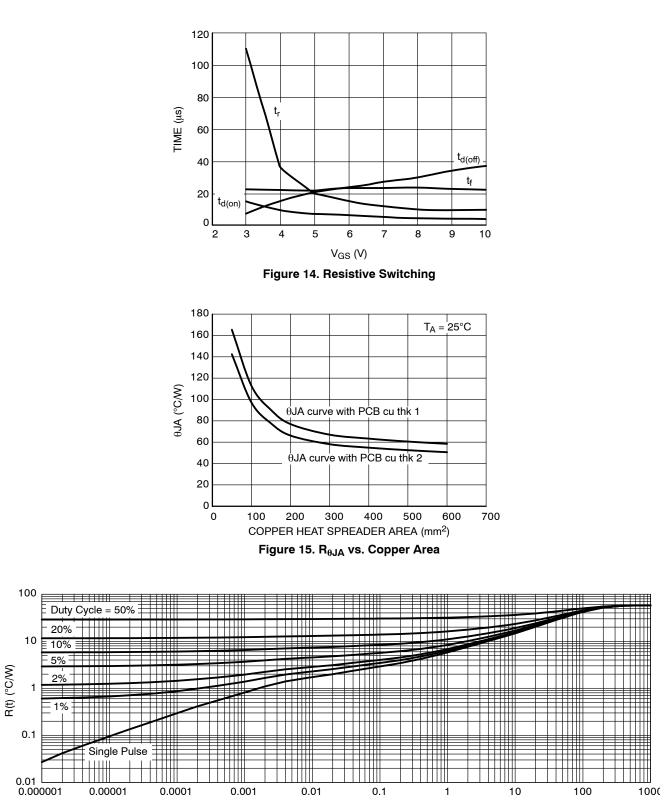
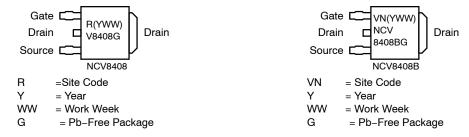





Figure 4. Inductive Load Switching Test Circuit

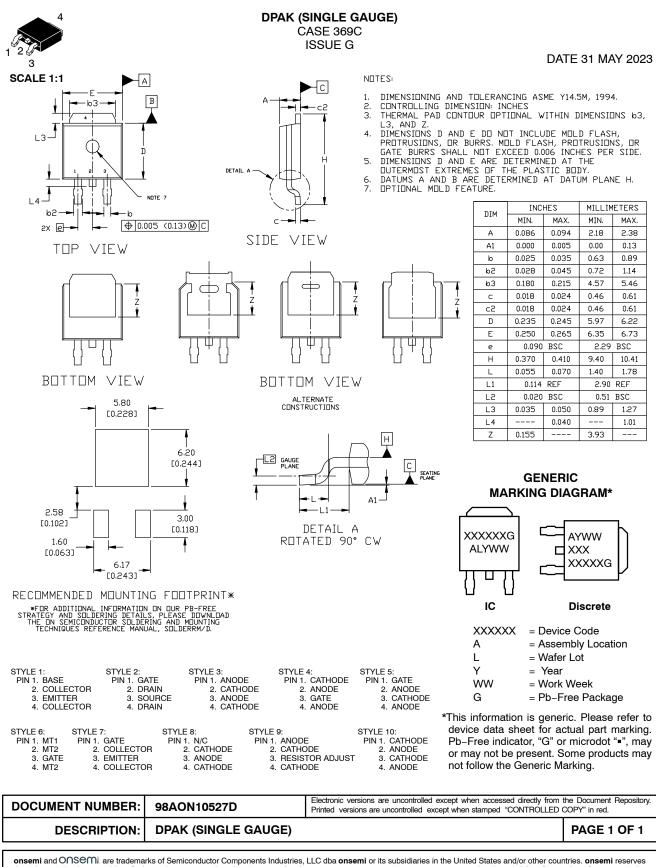




TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS



PULSE TIME (s) Figure 16. Transient Thermal Resistance

MARKING DIAGRAMS

ONSEM¹.

onsemi and OTISETTIL are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>