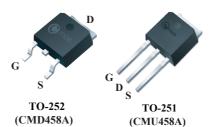


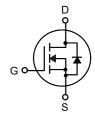
General Description

The 458A has been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Features

- 14A,250V,RDS(ON)<280m Ω @ VGS=10V
- 100% avalanche tested
- Simple Drive Requirements
- RoHS Compliant


Product Summary


BVDSS	RDSON	ID
250V	280mΩ	14A

Applications

- PWM Motor Controls
- LED TV
- DC-DC Converters

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage 250		V
V_{GS}	Gate-Source Voltage	±30	V
I _D @T _C =25℃	Continuous Drain Current ¹	14	Α
I _D @T _C =100℃	Continuous Drain Current ¹	10	А
I _{DM}	Pulsed Drain Current ²	56	А
EAS	Single Pulse Avalanche Energy ³	98	mJ
I _{AR}	Avalanche Current ² 3.4		А
P _D @T _C =25℃	Total Power Dissipation ¹	150	W
T _{STG}	Storage Temperature Range -55 to 175		°C
TJ	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
$R_{\theta JA}$	Thermal Resistance Junction-ambient ^{4,5}		55	°C/W	
$R_{ heta JC}$	Thermal Resistance Junction -Case ^{6,7}		1	°C/W	

Electrical Characteristics ($T_J=25^{\circ}$ C), unless otherwise noted)

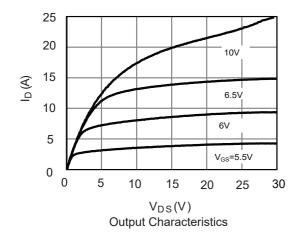
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 uA , T_J =25 $^{\circ}$ C	250			V
BVDSS /ATJ	Zero Gate Voltage Drain Current	In=250μA, Vgs=0V		0.27		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =7A		240	280	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	3		5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =250V, V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V, I _D =7A		8		S
Qg	Total Gate Charge			12		
Q _{gs}	Gate-Source Charge	V _{DS} =200V, V _{GS} =10V, I _D =14A		3.8		nC
Q _{gd}	Gate-Drain Charge			4.6		
T _{d(on)}	Turn-On Delay Time			21		
Tr	Rise Time	V_{DS} =125V, V_{GS} =10V, R_{G} =25 Ω		58		ns
T _{d(off)}	Turn-Off Delay Time	I _D =14A		30		113
T _f	Fall Time			33		
C _{iss}	Input Capacitance			650		
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		100		pF
C _{rss}	Reverse Transfer Capacitance			6.4		

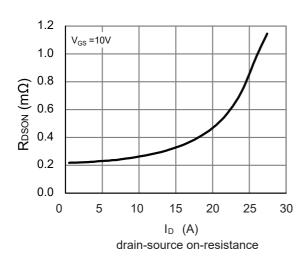
Diode Characteristics

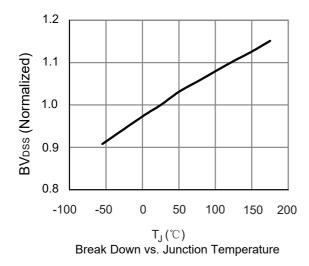
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current	V _G =V _D =0V , Force Current			14	Α
I _{SM}	Pulsed Source Current				56	А
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _F =14A, T _J =25℃		0.86	1.2	V
trr	Reverse Recovery Time	I _F =14A, V _{GS} =0V		150		ns
Qrr	Reverse Recovery Charge	dl /dt=100A/µs		1.24		μC

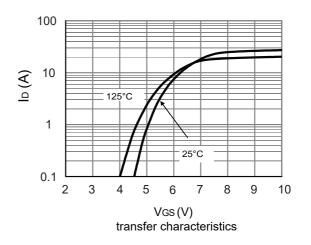
Noto :

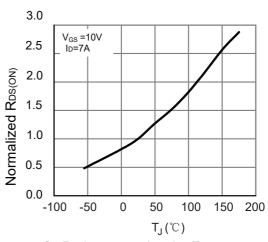
- 1. The power dissipation PD is based on TJ(MAX)=175°C in a TO-252 package, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 2. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175 $^{\circ}$ C.
- 3.The EAS data shows Max. rating .The test condition is Vbs=50V , Vgs=10V , L=1mH , Ias=14A.
- 4. The value of ReJA is measured with the device in a still air environment with TA =25 $^{\circ}$ C.
- 5.These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with Ta=25 °C.
- 6. The Reja is the sum of the thermal impedance from junction to case Rejc and case to ambient.
- 7. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_J(MAX)=175°C.

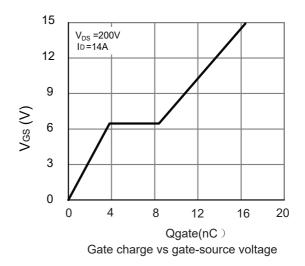

This product has been designed and qualified for the counsumer market.

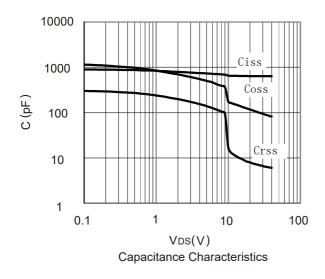

Cmos assumes no liability for customers' product design or applications.

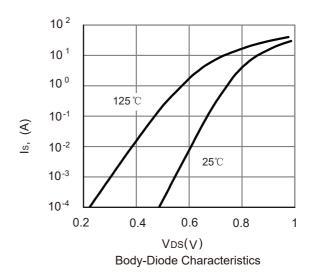

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.

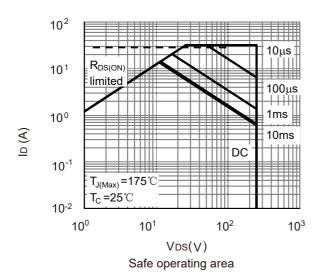


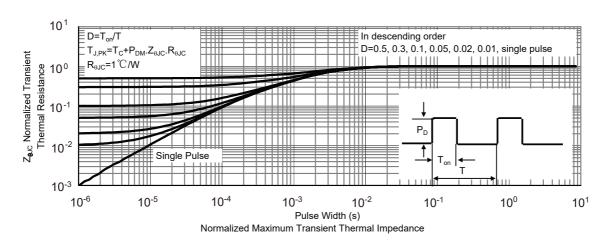

Typical Characteristics






On-Resistance vs. Junction Temperature





Typical Characteristics

