SMGS128A -- DECEMBER 1989 -- REVISED DECEMBER 1990 - 131 072 × 8 Organization - Single 5-V Supply (10% Tolerance) - Performance Ranges: | | ACCESS | ACCESS | ACCESS | READ | |-----------------|--------|--------|--------|--------| | | TIME | TIME | TIME | OR | | | (trac) | (tCAC) | (tcaa) | WRITE | | | • | | | CYCLE | | | (MAX) | (MAX) | (MAX) | (MAX) | | '48C128/C138-70 | 70 ns | 25 ns | 40 ns | 130 ns | | '48C128/C138-80 | 80 ns | 25 ns | 40 ns | 150 ns | | '48C128/C138-10 | 100 ns | 30 ns | 45 ns | 180 ns | - TMS48C128 Enhanced Page Mode Operation with CAS-Before-RAS Refresh - TMS48C138 Write-Per-Bit Operation - Long Refresh Period . . . 512-Cycle Refresh in 8 ms (Max) - 3-State Unlatched Output - Lower Power Dissipation - Texas Instruments EPIC™ CMOS Process - All Inputs and Clocks Are TTL Compatible - High-Reliability Plastic 24/26-lead 300-Mil-Wide Surface Mount (SOJ) Package - Operating Free-Air Temperature Range ... 0°C to 70°C | | DJ Pac
(Top \ | • | | | |--------------------------------------|--------------------------------------|--|--|--| | DQ1
DQ2
DQ3
DQ4
W
RAS | 1
2
1
3
1
4
1
5 | 26]
25]
24]
23]
22]
21] | V _{SS}
DQ8
DQ7
DQ6
DQ5
CAS | | | NC
A0
A1
A2
A3
VCC | [8 | 19]
18]
17]
16]
15] | G
A8
A7
A6
A5
A4 | | | The package is shown for pinor | ut reference only. | |--------------------------------|--------------------| |--------------------------------|--------------------| | PIN | PIN NOMENCLATURE | | | | | | | | |-----------------|-----------------------|--|--|--|--|--|--|--| | A0-A8 | Address Inputs | | | | | | | | | CAS | Column-Address Strobe | | | | | | | | | DQ1-DQ8 | Data In/Data Out | | | | | | | | | Ğ | Data-Output Enable | | | | | | | | | NC | No Connect | | | | | | | | | RAS | Row-Address Strobe | | | | | | | | | W | Write Enable | | | | | | | | | Vcc | 5-V Supply | | | | | | | | | V _{SS} | Ground | | | | | | | | ### description The TMS48C128 and the TMS48C138 series are high-speed, 1 048 576-bit dynamic random-access memories organized as 131 072 words of eight bits each. They employ state-of-the-art EPIC™ (Enhanced Process Implanted CMOS) technology for high performance, reliability, and low power at a low cost. These devices feature maximum \overline{RAS} access times of 70 ns, 80 ns, and 100 ns. Maximum power dissipation is as low as 413 mW operating and 11 mW standby on 80 ns devices. The EPIC™ technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. I_{CC} peaks are 140 mA typical, and a − 1-V input voltage undershoot can be tolerated, minimizing system noise considerations. All inputs and outputs, including clocks, are compatible with Series 74 TTL. All addresses and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility. The TMS48C128 and TMS48C138 are offered in a 300-mil 24/26-lead plastic surface mount SOJ (DJ suffix) package. This package is characterized for operation from 0°C to 70°C. EPIC is a trademark of Texas Instruments Incorporated. #### operation #### enhanced page mode Page-mode operation allows faster memory access by keeping the same row address while selecting random column addresses. The time for row-address setup and hold and address multiplex is thus eliminated. The maximum number of columns that may be accessed is determined by the maximum RAS low time and the CAS page cycle time used. With minimum CAS page cycle time, all 256 columns specified by column addresses A0 through A7 can be accessed without intervening RAS cycles. Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling edge of \overline{RAS} . The buffers act as transparent or flow-through latches while \overline{CAS} is high. The falling edge of \overline{CAS} latches the column addresses. This feature allows the TMS48C128 to operate at a higher data bandwidth than conventional page-mode parts, since data retrieval begins as soon as column address is valid rather than when \overline{CAS} transitions low. This performance improvement is referred to as "enhanced page mode." Valid column address may be presented immediately after t_{RAH} (row address hold time) has been satisfied, usually well in advance of the falling edge of \overline{CAS} . In this case, data is obtained after t_{CAC} max (access time from \overline{CAS} low) if t_{CAA} max (access time from column address) has been satisfied. In the event that column addresses for the next page cycle are valid at the time \overline{CAS} goes high, access time for the next cycle is determined by the later occurrence of t_{CAC} or t_{CAP} (access time from rising edge of \overline{CAS}). ## write-per-bit operation (TMS48C138) The \overline{W} pin selects the write-per-bit option. The TMS48C138 is equipped with two modes of write operations. If \overline{W} is held low on the falling edge of \overline{RAS} (during a random access operation), the write-per-bit mode is enabled. When \overline{RAS} has latched the write-per-bit mask on-chip, input data is driven onto the DQ pins and is latched on the falling edge of the latter of \overline{CAS} or \overline{W} (for early write operation, \overline{W} can remain low for the entire \overline{RAS} low period). If a 0 is strobed into a particular I/O pin on the falling edge of \overline{RAS} , then the write circuits for that particular I/O will be inhibited and data will not be written from that I/O. If a 1 is strobed into a particular I/O pin on the falling edge of \overline{RAS} , then the write circuits for that particular I/O will not be inhibited and data will be written from that I/O. Important: The write-per-bit operation is selected only if \overline{W} is held low on the falling edge of \overline{RAS} . If \overline{W} is held high on the falling edge of \overline{RAS} , the write-per-bit function is not enabled and the write operation is identical to a standard ×4 or ×8 DRAM, with all I/Os being written by the data appearing on the DQ pins when the latter of \overline{W} or \overline{CAS} is brought low. Table 1. State When RAS Falls | W | DQ1-DQ8 | MODE | |---|---------|-------------------------| | 1 | X | Write enable at DQ1-DQ8 | | 0 | 1 | Write to DQ enabled | | 0 | 0 | Write to DQ disabled | SMGS128A - DECEMBER 1989 - REVISED DECEMBER 1990 ## address (A0 through A8) Seventeen address bits are required to decode 131 072 storage cell locations. Nine row-address bits are set up on pins A0 through A8 and latched on to the chip by the row-address strobe (RAS). Then eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the first column-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the output buffer, as well as latching the address bits into the column-address buffers. ## write enable (W) The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from the standard TTL circuits without a pullup resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} (early write), data out will remain in the high-impedance state for the entire cycle, permitting a write operation with \overline{G} grounded. #### data in (DQ1-DQ8) Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of $\overline{\text{CAS}}$ or $\overline{\text{W}}$ strobes data into the on-chip data latch. In an early write cycle, $\overline{\text{W}}$ is brought low prior to $\overline{\text{CAS}}$ and the data is strobed in by $\overline{\text{CAS}}$ with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, $\overline{\text{CAS}}$ will already be low, thus the data will be strobed in by $\overline{\text{W}}$ with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, $\overline{\text{G}}$ must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines. #### data out (DQ1-DQ8) The three-state output buffer provides direct TTL compatibility (no pullup resistor required) with a fanout of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} and \overline{G} are brought low. In a read cycle the output becomes valid after the access time interval t_{CAC} that begins with the negative transition of \overline{CAS} as long as t_{RAC} and t_{CAA} are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{G} are low. \overline{CAS} or \overline{G} going high returns it to a high-impedance state. #### output enable (G) \overline{G} controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers, putting them in the low-impedance state. It is necessary for both \overline{AAS} and \overline{CAS} to be brought low for the output buffers to go into low-impedance state. Once in the low-impedance state, they will remain in the low-impedance state until either \overline{G} or \overline{CAS} is brought high. SMGS128A — DECEMBER 1989 — REVISED DECEMBER 1990 #### refresh A refresh operation must be performed at least once every eight milliseconds to retain data. This can be achieved by strobing each of the 512 rows (A0-A8). A normal read or write cycle will refresh all bits in each row that is selected. A $\overline{\text{RAS}}$ -only operation can be used by holding $\overline{\text{CAS}}$ at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state. Externally generated addresses must be used for a $\overline{\text{RAS}}$ -only refresh. Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by holding $\overline{\text{CAS}}$ at V_{IL} after a read operation and cycling $\overline{\text{RAS}}$ after a specified precharge period, similar to a $\overline{\text{RAS}}$ -only refresh cycle. #### CAS-before-RAS refresh $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh is utilized by bringing $\overline{\text{CAS}}$ low earlier than $\overline{\text{RAS}}$ (see parameter $\overline{\text{t}_{\text{CSR}}}$) and holding it low after $\overline{\text{RAS}}$ falls (see parameter $\overline{\text{t}_{\text{CHR}}}$). For successive $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh cycles, $\overline{\text{CAS}}$ can remain low while cycling $\overline{\text{RAS}}$. The external address is ignored and the refresh address is generated internally. The external address is also ignored during the hidden refresh option. #### power-up To achieve proper device operation, an initial pause of 200 μs followed by a minimum of eight initialization cycles is required after power-up to the full V_{CC} level. # logic symbol[†] [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. # functional block diagram # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Voltage range on any pin (see Note 1) | 1 V to 7 V | |---------------------------------------|-------------------| | Voltage range on V _{CC} | – 1 V to 7 V | | Short circuit output current | | | Power dissipation | 1 W | | Operating free-air temperature range | 0°C to 70°C | | Storage temperature range | . − 65°C to 150°C | [†]Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values in this data sheet are with respect to VSS. #### recommended operating conditions | | | MIN | NOM | MAX | UNIT | |-----|--------------------------------------|------------------|-----|-----|------| | Vcc | Supply voltage | 4.5 | 5 | 5.5 | > | | Vss | Supply voltage | | 0 | | ٧ | | ViH | High-level input voltage | 2.4 | | 6.5 | ٧ | | VIL | Low-level input voltage (see Note 2) | _ 1 [†] | | 0.8 | V | | TA | Operating free-air temperature | 0 | • | 70 | °C | NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only. [†] Characterized at 5.5 V VCC. SMGS128A - DECEMBER 1989 - REVISED DECEMBER 1990 # electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | '48C128-70
'48C138-70 | | '48C128-80
'48C138-80 | | '48C128-10
'48C138-10 | | UNIT | |------------------|--|---|--------------------------|------|--------------------------|------|--------------------------|------|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | 1 | | VOH | High-level output voltage | I _{OH} = -5 mA | 2.4 | | 2.4 | | 2.4 | | V | | VOL | Low-level output voltage | I _{OL} = 4.2 mA | | 0.4 | | 0.4 | | 0.4 | V | | Ŋ | Input current (leakage) | V _I = 0 to 5.8 V, V _{CC} = 5 V,
All other pins = 0 to V _{CC} | - 124 | ± 10 | | ± 10 | | ± 10 | μА | | Ю | Output current (leakage) | $\frac{V_O = 0 \text{ to } V_{CC}, V_{CC} = 5.5 \text{ V},}{\text{CAS high}}$ | * . | ± 10 | - | ± 10 | | ± 10 | μА | | ¹ CC1 | Read/write cycle current | tRWC = minimum, VCC = 5.5 V | · | 85 | | 80 | | 70 | mA | | ICC2 | Standby current | After 1 memory cycle,
RAS and CAS high, V _{IH} = 2.4 V | | 2 | | 2 | | 2 | mA | | lCC3 | Average refresh circuit
(RAS-only or CBR) | t _{RWC} = minimum, V _{CC} = 5.5 V,
RAS cycling, CAS high
(RAS-only), RAS low after CAS
low (CBR) | | 80 | | 75 | | 65 | mA | | ICC4 | Average page current | tpc = minimum, Vcc = 5.5 V,
RAS low, CAS cycling | | 60 | | 50 | | 45 | mA | # capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz (see Note 3) | | PARAMETER | MIN | TYP | MAX | UNIT | |--------------------|--|-----|-----|---|------| | C _{i(A)} | Input capacitance, address inputs | | | 5 | ρF | | C _{i(RC)} | Input capacitance, strobe inputs | | | 7 | pF | | C _{i(W)} | Input capacitance, write-enable input | | | 7 | DF | | C _{i(G)} | Input capacitance, output-enable input | | | 7 | pF | | Co | Output capacitance | | | - · · · · · · · · · · · · · · · · · · · | - P. | NOTE 3: V_{CC} equal to 5 V \pm 0.5 V and the bias on pins under test is 0 V. # switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1) | | PARAMETER | '48C128-70
'48C138-70 | | '48C128-80
'48C138-80 | | '48C128-10
'48C138-10 | | UNIT | |------------------|---|--------------------------|-----|--------------------------|-----|--------------------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | †CAC | Access time from CAS low | | 25 | | 25 | | 30 | ns | | ^t CAA | Access time from column address | | 40 | | 40 | | 45 | ns | | ^t RAC | Access time from RAS low | | 70 | | 80 | | 100 | ns | | tGAC | Access time from G low | - | 25 | | 25 | | 30 | ns | | ^t CAP | Access time from column precharge | | 45 | | 45 | | 50 | ns | | ^t OFF | Output disable time after CAS high (see Note 4) | 0 | 20 | 0 | 20 | 0 | 25 | ns | | tGOFF | Output disable time after G high (see Note 4) | 0 | 20 | 0 | 20 | 0 | 25 | ns | NOTE 4: tOFF and tGOFF are specified when the output is no longer driven. # timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Note 5) | | | '48C128-70
'48C138-70 | | '48C128-80
'48C138-80 | | '48C128-10
'48C138-10 | | UNIT | |------------------|--|--------------------------|---------|--------------------------|---------|--------------------------|---------|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | ^t RC | Read cycle time (see Note 6) | 130 | | 150 | | 180 | | ns | | twc | Write cycle time | 130 | - | 150 | | 180 | | ns | | tRWC | Read-write/read-modify-write cycle time | 185 | | 205 | | 245 | _ | ns | | tPC | Page-mode read or write cycle time (see Note 7) | 50 | | 50 | | 55 | | ns | | ^t PCM | Page-mode read-modify-write cycle time | 105 | | 105 | | 120 | | ns | | ^t CP | Pulse duration, CAS high | 10 | | 10 | | 10 | | ns | | tCAS | Pulse duration, CAS low (see Note 8) | 25 | 10 000 | 25 | 10 000 | 30 | 10 000 | ns | | tRP | Pulse duration, RAS high (precharge) | 50 | | 60 | | 70 | | ns | | tRAS | Non-page-mode pulse duration, RAS low (see Note 9) | 70 | 10 000 | 80 | 10 000 | 100 | 10 000 | ns | | †RASP | Page-mode pulse duration, RAS low (see Note 9) | 70 | 100 000 | 80 | 100 000 | 100 | 100 000 | ns | | tWP | Write pulse duration | 15 | | 15 | | 15 | | ns | | tASC | Column-address setup time before CAS low | 0 | | 0 | | 0 | | ns | | †ASR | Row-address setup time before RAS low | 0 | | 0 | | 0 | | ns | | tDS | Data setup time before W low (see Note 10) | 0 | | 0 | | 0 | | ns | | tRCS | Read setup time before CAS low | 0 | | 0 | | 0 | | ns | | twcs | W-low setup time before CAS low (see Note 11) | 0 | | 0 | | 0 | | ns | | tCWL | W-low setup time before CAS high | 20 | | 20 | | 25 | | ns | | ^t RWL | W-low setup time before RAS high | 20 | | 20 | | 25 | | ns | | [†] CAH | Column-address hold time after CAS low (see Note 10) | 15 | | 15 | | 20 | | ns | | †RAH | Row-address hold time after RAS low | 10 | | 12 | | 15 | | ns | | [†] AR | Column-address hold time after RAS low (see Note 12) | 55 | - | 60 | • | 70 | | ns | | ^t DH | Data hold time after CAS low (see Note 10) | 15 | ···· | 15 | | 20 | | ns | | t _{DHR} | Data hold time after RAS low (see Note 12) | 55 | | . 60 | | 70 | | ns | | †RCH | Read hold time after CAS high (see Note 13) | 0 | | 0 | | 0 | | ns | | tRRH | Read hold time after RAS high (see Note 13) | 0 | | 0 | | 10 | | ns | | tWCH | Write hold time after CAS low (see Note 11) | 15 | | 15 | | 20 | | ns | | †WCR | Write hold time after RAS low (see Note 12) | 55 | | 60 | | 70 | | ns | #### Continued next page. NOTES: 5. Timing measurements are referenced to VIL max and VIH min. - 6. All cycle times assume t_T = 5 ns. - To guarantee t_C(P) min, I_{SU(CA)} should be greater than or equal to t_{W(CH)}. In a read-modify-write cycle, t_{CWD} and t_{CWL} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{CAS}). - 9. In a read-modify-write cycle, tRWD and tRWL must be observed. Depending on the user's transition times, this may require additional RAS low time (tRAS). - 10. Later of CAS or W in write operations. - 11. Early write operation only. - 12. The minimum value is measured when tRCD is set to tRCD min as a reference. - 13. Either tRCH or tRRH must be satisfied for a read cycle. SMGS128A — DECEMBER 1989 — REVISED DECEMBER 1990 # timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Note 5) (concluded) | | | '48C128-70
'48C138-70 | | '48C128-80
'48C138-80 | | 48C128-10
48C138-10 | | UNIT | |------------------|--|--------------------------|-----|--------------------------|-----|------------------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | ^t GH | G command hold time | 20 | | 20 | | 25 | | ns | | tCSH | Delay time, RAS low to CAS high | 70 | | 80 | | 100 | | ns | | tCRP | Delay time, CAS high to RAS low | 0 | | 0 | | 0 | | ns | | tRSH | Delay time, CAS low to RAS high | 25 | | 25 | | 30 | | ns | | tCWD | Delay time, $\overline{\text{CAS}}$ low to $\overline{\text{W}}$ low (see Note 14) | 55 | | 55 | | 65 | | ns | | †RCD | Delay time, RAS low to CAS low (see Note 15) | 20 | 45 | 22 | 55 | 25 | 70 | ns | | †RAD | Delay time, RAS low to column address (see Note 15) | 15 | 30 | 17 | 40 | 20 | 55 | ns | | ^t RAL | Delay time, column address to RAS high | 40 | | 40 | | 45 | | ns | | ^t CAL | Delay time, column address to CAS high | 40 | | 40 | | 45 | | ns | | tRWD | Delay time, RAS low to W low (see Note 14) | 100 | | 110 | | 135 | | ns | | tAWD | Delay time, column address to \overline{W} low (see Note 14) | 70 | | 70 | | 80 | | ns | | tCLZ | Delay time, CAS low to DQ in low-Z | 0 | | 0 | | 0 | | ns | | tGDD | Delay time, G high before data at DQ | 20 | | 20 | | 25 | | ns | | tGSR | Delay time, G low to RAS high | 25 | | 25 | | 30 | | ns | | tCHR | Delay time, RAS low to CAS high (see Note 16) | 15 | | 20 | | 25 | | ns | | tCSR | Delay time, CAS low to RAS low (see Note 16) | 10 | | 10 | | 10 | | ns | | ^t RPC | Delay time, RAS high to CAS low (see Note 16) | 0 | | 0 | | 0 | | ns | | twBS | Write-per-bit setup time | 0 | | 0 | | 0 | - | ns | | twBH | Write-per-bit hold time | 10 | | 10 | | 10 | | ns | | twds | Write-per-bit selection setup time | 0 | | 0 | | 0 | | ns | | tWDH | Write-per-bit selection hold time | 10 | | 10 | | 10 | | ns | | ^t REF | Refresh time interval | | 8 | | 8 | | 8 | ms | | tŢ | Transition time | 3 | 50 | 3 | 50 | 3 | 50 | ns | NOTES: 5. Timing measurements are referenced to V_{IL} max and V_{IH} min. - 14. Read-modify-write operation only. - 15. Maximum value specified only to guarantee access time. - 16. CAS-before-RAS refresh only. Figure 1. Load Circuits For Timing Parameters # read cycle timing NOTE 17: Output may go from high impedance to an invalid data state prior to the specified access time. # early write cycle timing # early write cycle (write-per-bit selected) # write cycle timing NOTE 10: Later of \overline{CAS} or \overline{W} in write operation. # write cycle (write-per-bit selected) # read-modify-write cycle (write-per-bit selected) # read-modify-write cycle timing ### enhanced page-mode read cycle timing - NOTES:17. Output may go from high impedance to an invalid data state prior to the specified access time. - 18. A write cycle or read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing specifications are not violated. - 19. Access time is tCAP or tCAA dependent. ### enhanced page-mode write cycle timing NOTES:20. A read cycle or a read-modify-write cycle can be intermixed with the write cycles as long as the read and read-modify-write timing specifications are not violated. 21. Referenced to CAS or W, whichever occurs last. # enhanced page-mode write cycle (write-per-bit selected) # enhanced page-mode read-modify-write cycle timing NOTES:17. Output may go from high impedance to an invalid data state prior to the specified access time. 22. A read or a write cycle can be intermixed with read-modify-write cycles as long as the read and write cycle timing specifications are not violated. # enhanced page-mode read-modify-write cycle (write-per-bit selected) # **RAS**-only refresh timing # TMS48C128, TMS48C138 131 072-WORD BY 8-BIT HIGH-SPEED DYNAMIC RANDOM-ACCESS MEMORIES SMGS128A — DECEMBER 1989 — REVISED DECEMBER 1990 # hidden refresh cycle # automatic (CAS-before-RAS) refresh cycle timing