$\mu \text{A79M00 SERIES} \\ \textbf{NEGATIVE-VOLTAGE REGULATORS} \\$

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

- 3-Terminal Regulators
- Output Current Up to 500 mA
- No External Components
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild µA79M00 Series

description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement the μ A78M00 series in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

The input terminal is in electrical contact with the mounting base.

TO-220AB

	1			
	M = (manna)	PACKAGE	D DEVICES	CHIP
Та	V _O (nom) (V)	HEAT-SINK MOUNTED (KC)	HEAT-SINK MOUNTEDT	FORM (Y)
	-5	μA79M05CKC	µA79M05CKTP	μΑ79Μ05Υ
	-6	µА79М06СКС	µА79М06СКТР	μA79M06Y
	-8	μA79M08CKC	HA79M08CKTP	μ Α79Μ08 Υ
0°C to 125°C	12	μA79M12CKC	C 479M12OKTP	μA79M12Y
	-15	μA79M15CKC		μA79M15Y
	-20	μА79М20СКС	DA79M20CKTP	μA79M20Y
	-24	μA79M24CKC	µА79M24CKTP	μ Α79Μ24 Υ

AVAILABLE OPTIONS

The KTP package is only available in tape and reel.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Prasa Instruments standard warranty. Production processing does not necessarily include tasting of all parameters.

8961724 0099695 254

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

schematic

Resistor values shown are nominal and in Ω .

8961724 0099696190 🛤 💐

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

µA79MxxY chip information

This chip, when properly assembled, displays characteristics similar to the μ A79MxxC. Thermal compression or ultrasonic bonding can be used on the doped aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

8961724 0099697 027 📖

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

		μ Α79ΜxxC	UNIT
Input veltage	μΑ79M20, μΑ79M24	-40	
Input voltage	All others	-35	- v
Continuous total power dissipation (see Note 1)		See Dissipation Rating Tab	les 1 and 2
Operating free-air, TA, case, TC, or virtual junction, TJ, ter	mperature range	0 to 150	°C
Storage temperature range, Tstg		-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 sec	condis	260	°⊂

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
KC KTP†	2000 mW	16 mW/°C	1280 mW	400 mW

[†] The KTP package is product preview only and derating information is not yet available.

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGE	T _C ≤ 120°C POWER RATING	DERATING FACTOR ABOVE T _C = 120°C	T _C = 125°C POWER RATING
KC	7.5 W	250 mW/°C	6.25 W
ктр†			

[†] The KTP package is product preview only and derating information is not yet available.

recommended operating conditions

		MIN	MAX	UNIT
	μA79M05C	-7	-25	
	μA79M06C	-8	-25	
	μ Α79M08 C	-10.5	25	
Input voltage, V _I	μΑ79M12C	-14.5	30	v
	μA79M15C		-30	
	μA79M20C	-23	-35	
	μA79M24C	-27	-38	
Output current, IO			500	mA
Operating virtual junction temperature, TJ		0	125	°C

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, $V_I = -10 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

				μΑ79Μ05C		
PARAMETER	TEST CO	TEST CONDITIONS [†]			MAX	UNIT
			-4.8	-5	-5.2	
Output voltage‡	$V_{I} = -7 V \text{ to } -25 V,$ $T_{J} = 0^{\circ}C \text{ to } 125^{\circ}C$	I _O = 5 mA to 350 mA,	-4.75		-5.25	V
	$V_{I} = -7 V \text{ to } -25 V$		7	7	50	
Input voltage regulation	$V_1 = -8 V \text{ to} - 18 V$			3	30	mV
Ripple rejection	$V_{I} = -8 V \text{ to} - 18 V$, .	$I_{O} = 100 \text{ mA},$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	50			dB
		I _O = 300 mA	54	60		
	I _O = 5 mA to 500 mA		1	75	100	
Output voltage regulation	IO = 5 mA to 350 mA	IO = 5 mA to 350 mA		50		mV
Temperature coefficient of output voltage	1 ₀ = 5 mA,	T _J = 0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			125		μV
Dropout voltage				1.1		V
Bias current				1	2	mA
	$V_{I} = -8 V \text{ to} - 18 V,$	T _J = 0°C to 125°C			0.4	
Bias current change	IO = 5 mA to 350 mA,	IO = 5 mA to 350 mA, Tj = 0°C to 125°C			0.4	mA
Short-circuit output current	V _I = -30 V			140		mA
Peak output current				0.65		A

† Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = –11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

		TEST CONDITIONS		A79M06	C	LINUT
PARAMETER	TEST CO	ONDITIONS	μΑ79M06 MIN TYP -5.75 -6 -5.7 7 50 3 50 54 50 55 -0.4 150 1.1 1	MAX	UNIT	
			-5.75	-6	-6.25	
Output voltage [‡]	$V_1 = -8 V \text{ to } -25 V,$ T _J = 0°C to 125°C	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	-5.7		-6.3	V
· · · · · · · · · · · · · · · · · · ·	V _I = -8 V to -25 V			7	60	mV
Input voltage regulation	$V_{\rm I} = -9 V \text{ to} - 19 V$			3	40	ΠV
Ripple rejection	$V_{\rm I} = -9 V \text{ to} - 19 V,$	$I_0 \approx 100 \text{ mA},$ $T_J = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	50			dB
	f = 120 Hz	I _O = 300 mA	54 60			
	I _O = 5 mA to 500 mA			80	120	mV
Output voltage regulation	IO = 5 mA to 350 mA			55		niv
Temperature coefficient of output voltage	i _O = 5 mA,	T _J = 0°C to 125°C		-0.4		mV/∘C
Output noise voltage	f = 10 Hz to 100 kHz			150		μV
Dropout voltage				1.1		V
Bias current				1	2	mA
	$V_{j} = -9 V \text{ to } -25 V$,	T _J = 0°C to 125°C			0.4	mA
Bias current change	I _O = 5 mA to 350 mA	$I_{O} = 5 \text{ mA to } 350 \text{ mA}, T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$			0.4	
Short-circuit output current	V ₁ = -30 V			140		mA
Peak output current				0.65		A

Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CON	TEST CONDITIONS [†]		μA79M08C		
	TESTCON	MIN	TYP	MAX	UNIT	
			~7.7	-8	-8.3	
Output voltage‡	$V_{f} = -10.5 V \text{ to } -25 V,$ $T_{J} = 0^{\circ}C \text{ to } 125^{\circ}C$	$I_{\rm O} = 5 \text{ mA to } 350 \text{ mA}, -7.6$			-8.4	v
Input voltage regulation	$V_{l} = -10.5 V \text{ to } -25 V$			8	80	
	$V_{ } = -11 V \text{ to } -21 V$			4	50	mV
Ripple rejection	$V_{\rm I} = -11.5 \text{ V to } -21.5 \text{ V},$ f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
		IO = 300 mA	54	59		
Output voltage regulation	IO = 5 mA to 500 mA			90	160	
	IO = 5 mA to 350 mA			60		mV
Temperature coefficient of output voltage	I _O = 5 mA,	Tj = 0°C to 125°C		-0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			200		μV
Dropout voltage	IO = 5 mA			1.1		V
Bias current				1	2	mA
Pice surrent abance	V _I = -10.5 V to -25 V,	T _J = 0°C to 125°C			0.4	
Bias current change	IO = 5 mA to 350 mA,	T _J = 0°C to 125°C			0.4	mA
Short-circuit output current	V ₁ = −30 V			140		mA
Peak output current				0.65		A

† Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = -19 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

TEAT	TERT CONDITIONAL		μ Α79M12C			
TEST CC	TEST CONDITIONS:			MAX	UNIT	
		-11.5	-12	-12.5	1	
$V_{I} = -14.5 V \text{ to } -30 V_{J}$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	V, $I_{O} = 5 \text{ mA to } 350 \text{ mA}$,	-11.4		-12.6	V	
$V_{i} = -14.5 \text{ V to } -30 \text{ V}$	/		9	80		
V _I = -15 V to -25 V		1	5	50	mV	
$V_{I} = -15V \text{ to } -25 \text{ V},$ f = 120 Hz	IO = 100 mA, TJ = 0°C to 125°C	50			dB	
	lo = 300 mA	54	60		1	
IO = 5 mA to 500 mA			65	240		
IO = 5 mA to 350 mA	IO = 5 mA to 350 mA		45		m∨	
lO = 5 mA,	T _J = 0°C to 125°C		-0.8		mV/°C	
f = 10 Hz to 100 kHz			300		μV	
			1.1		v	
			1.5	3	mA	
VI = 14.5 V to 30 V	/, T _J = 0°C to 125°C			0.4		
IO = 5 mA to 350 mA	IO = 5 mA to 350 mA, TJ = 0°C to 125°C			0.4	mA	
V _I = -30 V			140		mA	
			0.65		A	
	$V_{I} = -14.5 V \text{ to } -30 \text{ T}$ $T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$ $V_{I} = -14.5 V \text{ to } -30 \text{ T}$ $V_{I} = -15 V \text{ to } -25 V$ $V_{I} = -15 V \text{ to } -25 V,$ $f = 120 \text{ Hz}$ $I_{O} = 5 \text{ mA to } 500 \text{ mA}$ $I_{O} = 5 \text{ mA, to } 350 \text{ mA}$ $I_{O} = 5 \text{ mA, to } 100 \text{ kHz}$ $V_{I} = -14.5 V \text{ to } -30 \text{ V}$ $V_{I} = -14.5 V \text{ to } -30 \text{ V}$	$ \begin{array}{c} V_{I} = -14.5 \ V \ to \ -30 \ V \\ \hline V_{I} = -15 \ V \ to \ -25 \ V \\ \hline V_{I} = -15 \ V \ to \ -25 \ V \\ \hline I_{J} = 0^{\circ} C \ to \ 125^{\circ} C \\ \hline I_{O} = 300 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 500 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \ to \ 125^{\circ} C \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \ to \ 125^{\circ} C \ to \ 125^{\circ} C \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \ to \ 350 \ mA \ to \ 125^{\circ} C \ to \ 125^{\circ} C \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \ to \ 350 \ mA \ to \ 125^{\circ} C \ to \ 125^{\circ} C \\ \hline I_{O} = 5 \ mA \ to \ 350 \ mA \ to \ 350$	$\begin{tabular}{ c c c c } \hline TEST CONDITIONST & MIN & -11.5 \\ \hline MIN & -11.5 \\ \hline V_I = -14.5 \ V \ to -30 \ V, \ I_Q = 5 \ mA \ to \ 350 \ mA, \\ \hline T_J = 0^\circ C \ to \ 125^\circ C & -11.4 \\ \hline V_I = -15 \ V \ to \ -25 \ V, \\ \hline V_I = -15 \ V \ to \ -25 \ V, \\ \hline I_Q = 100 \ mA, \\ \hline T_J = 0^\circ C \ to \ 125^\circ C & 50 \\ \hline I_Q = 300 \ mA & 54 \\ \hline I_Q = 5 \ mA \ to \ 350 \ mA & -11.4 \\ \hline I_Q = 5 \ mA, & T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ C \\ \hline I_Q = 5 \ mA, & T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ C \\ \hline I_Q = 5 \ mA \ to \ 350 \ mA & -11.4 \\ \hline V_I = -14.5 \ V \ to \ -30 \ V, \ T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ C \\ \hline I_Q = 5 \ mA \ to \ 350 \ mA, & T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ C \\ \hline I_Q = 5 \ mA \ to \ 350 \ mA, & T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ C \\ \hline I_Q = 5 \ mA \ to \ 350 \ mA, & T_J = 0^\circ C \ to \ 125^\circ C & -125^\circ $	$\begin{tabular}{ c c c c c } \hline TEST CONDITIONST & MIN TYP & -11.5 & -12 \\ \hline & & -11.5 & -12 \\ \hline V_I = -14.5 V to -30 V, & I_Q = 5 mA to 350 mA, \\ T_J = 0^{\circ} C to 125^{\circ} C & -11.4 \\ \hline & V_I = -15 V to -25 V & 9 \\ \hline V_I = -15 V to -25 V, \\ f = 120 Hz & I_Q = 0^{\circ} C to 125^{\circ} C & 50 \\ \hline & I_Q = 5 mA to 500 mA & 65 \\ \hline & I_Q = 5 mA to 350 mA & 455 \\ \hline & I_Q = 5 mA, & T_J = 0^{\circ} C to 125^{\circ} C & -0.8 \\ \hline & f = 10 Hz to 100 kHz & 3000 \\ \hline & & 1.1 \\ \hline & & 1.5 \\ \hline & V_I = -14.5 V to -30 V, & T_J = 0^{\circ} C to 125^{\circ} C & 1.5 \\ \hline & V_I = -14.5 V to -30 V, & T_J = 0^{\circ} C to 125^{\circ} C & 1.5 \\ \hline & V_I = -14.5 V to -30 V, & T_J = 0^{\circ} C to 125^{\circ} C & V_I = -30 V & 140 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline TEST CONDITIONST & \hline MIN & TYP & MAX \\ \hline MIN & TYP & MAX \\ \hline & & -11.5 & -12 & -12.5 \\ \hline V_I = -14.5 V to -30 V, & I_O = 5 mA to 350 mA, \\ T_J = 0^\circ C to 125^\circ C & -11.4 & -12.6 \\ \hline V_I = -14.5 V to -30 V & 9 & 80 \\ \hline V_I = -15 V to -25 V, \\ f = 120 Hz & I_O = 100 mA, \\ T_J = 0^\circ C to 125^\circ C & 50 \\ \hline I_O = 300 mA & 54 & 60 \\ \hline I_O = 5 mA to 350 mA & 45 \\ \hline I_O = 5 mA, & T_J = 0^\circ C to 125^\circ C & -0.8 \\ \hline I = 10 Hz to 100 kHz & 300 \\ \hline I = -14.5 V to -30 V, & T_J = 0^\circ C to 125^\circ C & -0.8 \\ \hline I = 10 Hz to 100 kHz & 300 \\ \hline I = 5 mA to 350 mA & -11.1 \\ \hline I = -14.5 V to -30 V, & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\ \hline I_O = 5 mA to 350 mA & T_J = 0^\circ C to 125^\circ C & 0.4 \\$	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

8961724 0099700 441 🔳

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

		TEST CONDITIONS [†]		μ Α79Μ15C		
PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
			-14.4	-15	-15.6	
Output voltage [‡]	$V_{I} = -17.5 V \text{ to } -30 V,$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	l _O = 5 mA to 350 mA,	-14.25		- 15.75	V
Input voltage regulation	$V_{I} = -17.5 \text{ V to } -30 \text{ V}$			9	80	m٧
	V _I = -18 V to -28 V			7	50	
Ripple rejection	$V_{\rm I} = -18.5 V$ to $-28.5 V$,	IO = 100 mA, T _J = 0°C to 125°C	50			dB
	f = 120 Hz	I _O = 300 mA	54	59		
	IO = 5 mA to 500 mA			65	240	mV
Output voltage regulation	IO = 5 mA to 350 mA	I _O = 5 mA to 350 mA		45		inv
Temperature coefficient of output voltage	$I_0 = 5 \text{ mA},$	Tj = 0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			375		μV
Dropout voltage	l _O = 5 mA			1.1		V
Bias current				1.5	3	mA
Bias current change	$V_{\rm I} = -17.5 \text{ V to } -30 \text{ V},$	T _J = 0°C to 125°C			0.4	mA
	IO = 5 mA to 350 mA,	T _J = 0°C to 125°C			0.4	
Short-circuit output current	V _I = -30 V			140		mA
Peak output current				0.65		A

electrical characteristics at specified virtual junction temperature, $V_I = -23 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -29 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

		TEST CONDITIONST		A79M20	0	UNIT
PARAMETER	TEST CO			TYP	MAX	UNIT
			-19.2	-20	-20.8	
Output voltage [‡]	$V_{I} = -23 V \text{ to } -35 V,$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	I _O = 5 mA to 350 mA,	19		-21	v
	VI = -23 V to -35 V			12	80	mV
Input voltage regulation	$V_{I} = -24 V \text{ to } -34 V$			10	70	
Ripple rejection	$V_{l} = -24$ V to -34 V,	$I_{O} = 100 \text{ mA},$ T _J = 0°C to 125°C	50			dB
	f = 120 Hz	I _O = 300 mA	54	58		
	IO = 5 mA to 500 mA			75	300	mV
Output voltage regulation	IO = 5 mA to 350 mA	IO = 5 mA to 350 mA				1114
Temperature coefficient of output voltage	IO = 5 mA,	T _J = 0°C to 125°C		-1		mV/ºC
Output noise voltage	f = 10 Hz to 100 kHz			500		μV
Dropout voltage				1.1		V
Bias current				1.5	3.5	mA
······································	$V_1 = -23 \text{ V to } -35 \text{ V},$	T _J = 0°C to 125°C			0.4	mA
Bias current change	1 _O = 5 mA to 350 mA	$I_{O} = 5 \text{ mA to } 350 \text{ mA}, T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$			0.4	
Short-circuit output current	V ₁ = -30 V			140		mA
Peak output current				0.65		A

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, V_I = -33 V, I_O = 350 mA, T_J = 25° C (unless otherwise noted)

PARAMETER	TERT CO	TEST CONDITIONS [†]		μ Α79Μ24C		
	TEST CC	TEST CONDITIONS			MAX	UNIT
			-23	-24	-25	
Output voltage‡	$V_{I} = -27 V \text{ to } -38 V,$ $T_{J} = 0^{\circ} \text{C to } 125^{\circ} \text{C}$	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	-22.8		-25.2	V
Input voltage regulation	$V_{\rm I} = -27 V \text{ to } -38 V$			12	80	
	$V_{1} = -28 V \text{ to } -38 V$			12	70	m∨
Ripple rejection	$V_{I} = -28 V$ to $-38 V$, f = 120 Hz	IO = 100 mA, TJ = 0°C to 125°C	50			dB
	1 = 120 HZ	l _O = 300 mA	54	58		1
Output voltage regulation	IO = 5 mA to 500 mA			75	300	
	IO = 5 mA to 350 mA			50		m∨
Temperature coefficient of output voltage	IO = 5 mA,	Tj = 0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			600		μV
Dropout voltage				1.1		v
Bias current				1.5	3.5	mA
Bias current change	$V_{l} = -27 \text{ V to } -38 \text{ V},$	T _J = 0°C to 125°C			0.4	
Bias current change	IO = 5 mA to 350 mA,	IO = 5 mA to 350 mA, TJ = 0°C to 125°C			0.4	mA
Short-circuit output current	VI = -30 V			140		mA
Peak output current				0.65		A

Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

 8961724
 0099702
 214
 Post office box 65330*
 Dallas, Texas 75265

 3-310
 Post office box 65530*
 Dallas, Texas 75265

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, $V_I = -10 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER			μ Α79M05Y			
	TEST CONDITIONS [†]	MIN	ТҮР	MAX	UNIT	
Output voltage‡			-5		V	
Input voltage regulation	$V_{I} = -7 V \text{ to } -25 V$		7			
	$V_{\rm I} = -8 V \text{ to} - 18 V$		3		mV	
Ripple rejection	V _I = -8 V to -18 V, I _O = 300 mA, f = 120 Hz		60		dB	
Output voltage regulation	IO = 5 mA to 500 mA		75			
	IO = 5 mA to 350 mA		50		mV	
Temperature coefficient of output voltage	I _O = 5 mA	1	-0.4		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		125		μV	
Dropout voltage			1.1		V	
Bias current			1		mA	
Short-circuit output current	V _I = -30 V	Γ	140		mA	
Peak output current			0.65		A	

Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -11 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		μΑ79Μ06Υ			
	rest conditions	MIN	TYP	MAX	UNIT	
Output voltage [‡]			-6		V	
Input voltage regulation	$V_{1} = -8 V \text{ to } -25 V$		7		mV	
	$V_{I} = -9 V \text{ to} - 19 V$		3			
Ripple rejection	$V_{I} = -9 V \text{ to} - 19 V$, $I_{O} = 300 \text{ mA}$, $f = 120 \text{ Hz}$		60		dB	
Output voltage regulation	IO = 5 mA to 500 mA		80		mv	
	i _O = 5 mA to 350 mA		55		mv	
Temperature coefficient of output voltage	I _O = 5 mA		-0.4		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		150		μV	
Dropout voltage		1	1.1		V	
Bias current			1	·	mA	
Short-circuit output current	$V_{I} = -30 V$		140		mA	
Peak output current			0.65		A	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

8961724 0099703 150 🔳

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST		μΑ79Μ08Υ		
			TYP	MAX	UNIT
Output voltage‡		1	-8		V
Input voltage regulation	$V_{i} = -10.5 V \text{ to } -25 V$	8			
	$V_{I} = -11 V \text{ to } -21 V$	1	4		m∨
Ripple rejection	V _I = -11.5 V to -21.5 V, I _O = 300 mA, f = 120 Hz		59		dB
Output voltage regulation	IO = 5 mA to 500 mA		90		
	IO = 5 mA to 350 mA		60		m∨
Temperature coefficient of output voltage	IO = 5 mA		-0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		200		μV
Dropout voltage	IO = 5 mA		1.1		V
Bias current			1		mA
Short-circuit output current	V ₁ = -30 V		140		mA
Peak output current			0.65		A

Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST		μ Α79Μ12Υ			
	TEST CONDITIONST	MIN	TYP	MAX	UNIT	
Output voltage‡			-12		V	
Input voltage regulation	$V_{f} = -14.5 V \text{ to} -30 V$		9			
	$V_{\rm I} = -15 \text{ V to } -25 \text{ V}$	1	5		m∨	
Ripple rejection	V _I = -15V to -25 V, I _O = 300 mA, f = 120 Hz		60		dB	
A	IO = 5 mA to 500 mA		65			
Output voltage regulation	I _O = 5 mA to 350 mA	1	45		m∨	
Temperature coefficient of output voltage	I _O = 5 mA		-0.8		mV/⁰C	
Output noise voltage	f = 10 Hz to 100 kHz		300		μV	
Dropout voltage		1	1.1		v	
Bias current		1	1.5		mA	
Short-circuit output current	V _I = -30 V		140		mA	
Peak output current			0.65		A	

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, $V_I = -23 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST	μ Α79Μ15 Υ			Τ
		MIN	TYP	MAX	UNIT
Output voltage [‡]			-15		V
	V _I = -17.5 V to -30 V		9		
Input voltage regulation	$V_{i} = -18 V \text{ to } -28 V$		7		i mV
Ripple rejection	V _I = -18.5 V to -28.5 V, I _O = 300 mA, f = 120 Hz		59		dB
	IO = 5 mA to 500 mA		65		
Output voltage regulation	I _O = 5 mA to 350 mA		45		mV
Temperature coefficient of output voltage	io = 5 mA		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		375		μV
Dropout voltage	IO = 5 mA		1.1		V
Bias current			1.5		mA
Short-circuit output current	V _I = -30 V		140		mA
Peak output current			0.65		A

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = -29 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEAT ADDITIONAT	μ			
	TEST CONDITIONS [†]		TYP	MAX	UNIT
Output voltage‡			-20		V
Input voltage regulation	$V_{\rm I} = -23 \text{ V to } -35 \text{ V}$		12		mV
	$V_{I} = -24 V \text{ to } -34 V$		10		
Ripple rejection	VI = -24 V to -34 V, IO = 300 mA, f = 120 Hz		58		dB
Output voltage regulation	I _O = 5 mA to 500 mA		75		mV
	IO = 5 mA to 350 mA		50		
Temperature coefficient of output voltage	$I_{O} = 5 \text{ mA}$		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		500		μV
Dropout voltage			1.1		V
Bias current			1.5		mA
Short-circuit output current	$V_{I} = -30 V$		140		mA
Peak output current			0.65		A

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-μF capacitor across the input and a 1-μF capacitor across the output.

SLVS060A - JUNE 1976 - REVISED AUGUST 1995

electrical characteristics at specified virtual junction temperature, V_I = -33 V, I_O = 350 mA, T_J = 25° C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	μ Α ΄			
		MIN	ТҮР	MAX	UNIT
Output voltage‡			-24		v
Input voltage regulation	$V_1 = -27 V \text{ to } -38 V$		12		
	$V_{I} = -28 V \text{ to } -38 V$		12		mV
Ripple rejection	V _I = -28 V to -38 V, I _O = 300 mA, f = 120 Hz		58		dB
Output voltage regulation	IO = 5 mA to 500 mA		75		<u> </u>
	IO = 5 mA to 350 mA		50		mV
Temperature coefficient of output voltage	IO = 5 mA, TJ = 0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		600		μV
Dropout voltage			1.1		V
Bias current			1.5		mA
Short-circuit output current	$V_{ } = -30 V$		140		mA
Peak output current			0.65		A

[†] Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 2-µF capacitor across the input and a 1-µF capacitor across the output.

