# MSKSEMI 美森科







TVC



TSS



MOV



GDT



PIFF

**AONR21321-MS** 

Product specification





## **Description**

The AONR21321-MS uses advanced trench technology excellent RDS(ON), low gate charge and operation with gate

voltages as low as 4.5V. This device is suitable for use as aload switch or in PWM applications .

#### **Features**

 $V_{DS} = -30V, I_{D} = -50A$ 

 $RDS(ON) < 25m\Omega$  @ VGS=-4.5V

 $RDS(ON) < 15m\Omega$  @ VGS=-10V

High Power and current handing capability

Lead free product is acquired

Surface mount package

# **Application**

- PWM applications
- Load switch
- Power management

## **Reference News**

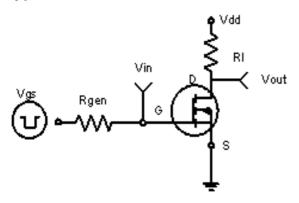
| PACKAGE OUTLINE                       | P-Channel MOSFET | Marking                       |
|---------------------------------------|------------------|-------------------------------|
| S S S S S S S S S S S S S S S S S S S | G S              | MSKSEMI<br>R21321<br>P30<br>● |
| DFN5X6-8L                             |                  |                               |

# Absolute Maximum Ratings (TA=25°C unless otherwise noted)

| Symbol   | Parameter                                        | Limit      | Unit       |  |
|----------|--------------------------------------------------|------------|------------|--|
| VDS      | Drain-Source Voltage                             | -30        | V          |  |
| VGS      | Gate-Source Voltage                              | ±20        | V          |  |
|          | Drain Current-Continuous (Tc=25 ℃)               |            |            |  |
| lD lD    | Drain Current-Continuous (Tc=100 ℃)              | -24        | Α          |  |
| IDM      | Drain Current-Pulsed (Note 1)                    | -80        | А          |  |
|          | Maximum Power Dissipation (Tc=25 ℃)              | 3          | W          |  |
| PD       | Maximum Power Dissipation (Tc=100 ℃)             | 1.3        |            |  |
| EAS      | Single pulse avalanche energy (Note 5)           | 231        | mJ         |  |
| TJ, TSTG | Operating Junction and Storage Temperature Range | -55 To 150 | $^{\circ}$ |  |
| RθJA     | Thermal Resistance, Junction-to-Ambient (Note 2) | 41.67      | °C/W       |  |



# Electrical Characteristics (TA=25℃unless otherwise noted)


| Parameter                        | Symbol   | Condition                                                            | Min | Тур  | Max  | Unit |
|----------------------------------|----------|----------------------------------------------------------------------|-----|------|------|------|
| Drain-Source Breakdown Voltage   | BVDSS    | Vgs=0V Ip=-250µA                                                     | -30 | -33  | -    | V    |
| Zero Gate Voltage Drain Current  | IDSS     | V <sub>DS</sub> =-30V,V <sub>GS</sub> =0V                            | -   | -    | -1   | μΑ   |
| Gate-Body Leakage Current        | IGSS     | Vgs=±20V,Vps=0V                                                      | -   | -    | ±100 | nA   |
| Gate Threshold Voltage           | VGS(th)  | V <sub>D</sub> s=V <sub>G</sub> s,I <sub>D</sub> =-250µA             | -1  | -1.5 | -3   | V    |
|                                  | 772(211) | V <sub>GS</sub> =-10V, I <sub>D</sub> =-10A                          | -   | 9    | 15   | mΩ   |
| Drain-Source On-State Resistance | RDS(ON)  | Vgs=-4.5V, ID=-7A                                                    | -   | 18   | 25   | mΩ   |
| Forward Transconductance         | gFS      | VDS=-10V,ID=-10A                                                     | -   | 20   | -    | S    |
| Input Capacitance                | Clss     |                                                                      | -   | 1750 | -    | PF   |
| Output Capacitance               | Coss     | V <sub>DS</sub> =-15V,V <sub>GS</sub> =0V,<br>F=1.0MHz               | -   | 215  | -    | PF   |
| Reverse Transfer Capacitance     | Crss     | 1 – 1.01VII 12                                                       | -   | 180  | -    | PF   |
| Turn-on Delay Time               | td(on)   |                                                                      | -   | 9    | -    | nS   |
| Turn-on Rise Time                | tr       | V <sub>DD</sub> =-15V, ID=-10A,                                      | -   | 8    | -    | nS   |
| Turn-Off Delay Time              | td(off)  | Vgs=-10V,Rgen=1 Ω                                                    | -   | 28   | -    | nS   |
| Turn-Off Fall Time               | tf       |                                                                      | -   | 10   | -    | nS   |
| Total Gate Charge                | Qg       |                                                                      | -   | 24   | -    | nC   |
| Gate-Source Charge               | Qgs      | V <sub>DS</sub> =-15V,I <sub>D</sub> =-10A,V <sub>GS</sub> =-<br>10V | -   | 3.5  | -    | nC   |
| Gate-Drain Charge                | Qgd      |                                                                      | -   | 6    | -    | nC   |
| Diode Forward Current (Note 2)   | Is       |                                                                      | -   | -    | -12  | Α    |
| Diode Forward Voltage (Note 3)   | VSD      | Vgs=0V,Is=-12A                                                       | -   | -    | -1.2 | V    |

#### Notes:

- $\textbf{1.} \ \ \text{Repetitive Rating: Pulse width limited by maximum junction temperature} \ \ .$
- **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec .
- **3.** Pulse Test: Pulse Width  $\leq 300\,\mu\text{s}$ , Duty Cycle  $\leq 2\%$ .
- ${\bf 4.}$  Guaranteed by design, not subject to production
- **5.** E<sub>AS</sub> condition: Tj=25°,  $V_{DD}$ =- 15V,  $V_{G}$ =10V, L=0 .5mH, Rg=25 $\Omega$ , I<sub>AS</sub>=-34A



# **Typical Electrical and Thermal Characteristics**



**Figure 1:Switching Test Circuit** 

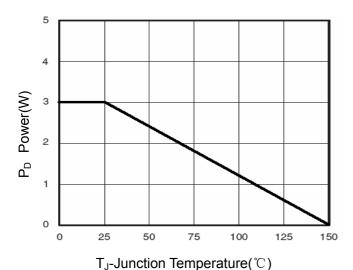



Figure 3 Power Dissipation

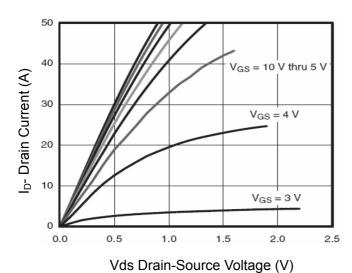



Figure 5 Output Characteristics



**Figure 2:Switching Waveforms** 

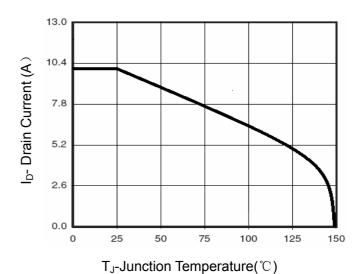
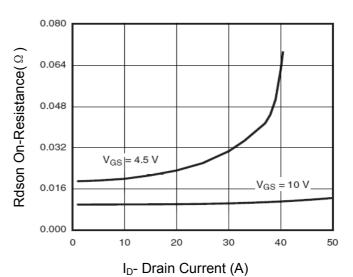
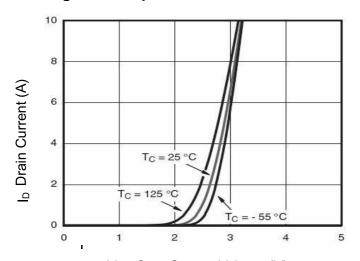
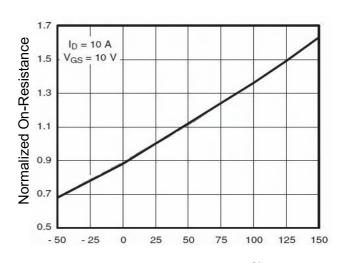
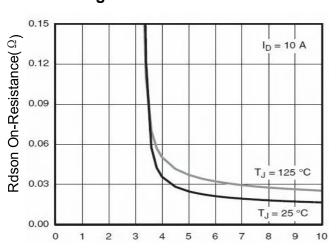



Figure 4 Drain Current

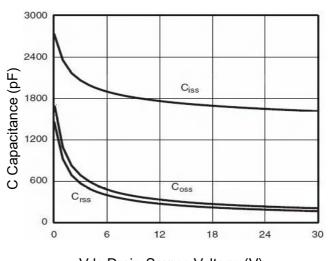





Figure 6 Drain-Source On-Resistance




#### **Figure 5 Output Characteristics**




Vgs Gate-Source Voltage (V)
Figure 7 Transfer Characteristics



 $T_J$ -Junction Temperature( ${}^{\mathbb{C}}$ )
Figure 8 Drain-Source On-Resistance



Vgs Gate-Source Voltage (V)
Figure 9 Rdson vs Vgs



Vds Drain-Source Voltage (V)
Figure 10 Capacitance vs Vds

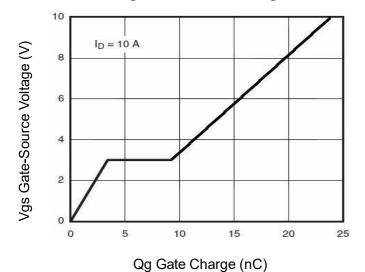



Figure 11 Gate Charge

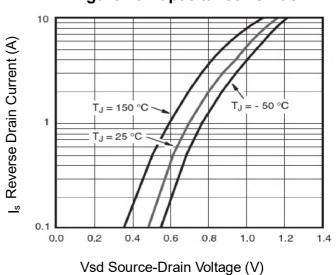
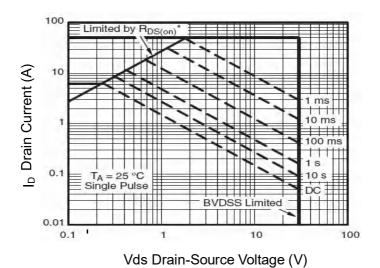
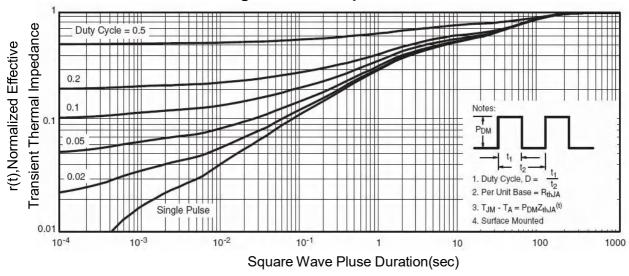
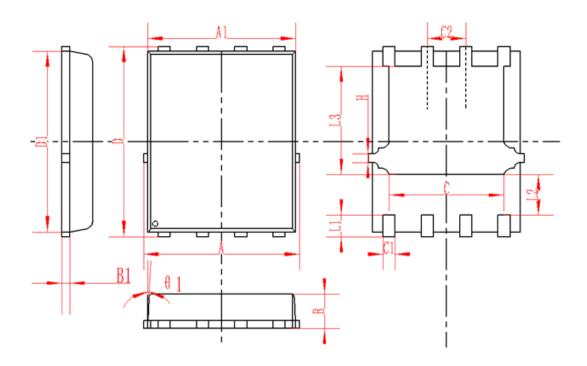





Figure 12 Source- Drain Diode Forward






**Figure 13 Safe Operation Area** 



**Figure 14 Normalized Maximum Transient Thermal Impedance** 



# DFN5X6-8L Package Information



| SYMBOL   | MM       |                 |                 | INCH  |                 |       |
|----------|----------|-----------------|-----------------|-------|-----------------|-------|
| STIVIDOL | MIN      | NOM             | MAX             | MIN   | NOM             | MAX   |
| А        | 4.95     | 5               | 5.05            | 0.195 | 0.197           | 0.199 |
| A1       | 4.82     | 4.9             | 4.98            | 0.190 | 0.193           | 0.196 |
| D        | 5.98     | 6               | 6.02            | 0.235 | 0.236           | 0.237 |
| D1       | 5.67     | 5.75            | 5.83            | 0.223 | 0.226           | 0.230 |
| В        | 0.9      | 0.95            | 1               | 0.035 | 0.037           | 0.039 |
| B1       | 0.254REF |                 | 0.010REF        |       |                 |       |
| С        | 3.95     | 4               | 4.05            | 0.156 | 0.157           | 0.159 |
| C1       | 0.35     | 0.4             | 0.45            | 0.014 | 0.016           | 0.018 |
| C2       | 1.27TYP  |                 | 0.5TYP          |       |                 |       |
| θ1       | 8。       | 10 <sub>°</sub> | 12 <sub>°</sub> | 8。    | 10 <sub>°</sub> | 12。   |
| L1       | 0.63     | 0.64            | 0.65            | 0.025 | 0.025           | 0.026 |
| L2       | 1.2      | 1.3             | 1.4             | 0.047 | 0.051           | 0.055 |
| L3       | 3.415    | 3.42            | 3.425           | 0.134 | 0.135           | 0.135 |
| Н        | 0.24     | 0.25            | 0.26            | 0.009 | 0.010           | 0.010 |

# **REEL SPECIFICATION**

| P/N          | PKG       | QTY  |
|--------------|-----------|------|
| AONR21321-MS | DFN5X6-8L | 5000 |



## **Attention**

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents—or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.